Skip to main content
Log in

Solution properties of poly(acrylamide-co-3,5,5-trimethylhexane methacrylate) and its polyelectrolyte derivative

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The physicochemical properties of hydrophobically modified polyacrylamide (HAPAM) containing a small amount of hydrophobic groups (3,5,5-trimethylhexane methacrylate) and its partially hydrolyzed derivative (HAPAM-10N500) were investigated. The 13C spectrum was used to establish the degree of hydrolysis of HAPAM-10N500. Small-angle X-ray scattering (SAXS) was employed to highlight the polyelectrolyte character of HAPAM-10N500, estimate the chain conformation in the semidilute regime, and evaluate the influence of the ionic strength and the type of salt. The weight average molecular weight, the second virial coefficient, and radius of gyration were determined by static light scattering (SLS). The polymers showed different rheological properties in aqueous solution, with significant increase in viscosity due to partial hydrolysis of HAPAM, however, with strong dependence on ionic strength of the medium. Results showed that the polymers HAPAM and HAPAM-10N500 are suitable for application in processes of moderate temperatures and salinities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jiménez-Regalado EJ, Cadenas-Pliego G, Pérez-Álvarez M, Hernández-Valdez Y (2004) Study of three different families of water-soluble copolymers: synsthesis, characterization and viscoelastic behavior of semidilute solutions of polymers prepared by solution polymerization. Polymer 45:1993–2000. doi:10.1016/j.polymer.2003.12.065

    Article  Google Scholar 

  2. Taylor KC, Nasr-El-Din HA (1998) Water-soluble hydrophobically associating polymers for improved oil recovery: a literature review. J Pet Sci Eng 19:265–280. doi:10.1016/S0920-4105(97)00048-X

    Article  CAS  Google Scholar 

  3. Gouveia LM, Grassl B, Müller AJ (2009) Synthesis and rheological properties of hydrophobically modified polyacrylamides with lateral chains of poly(propylene oxide) oligomers. JColloid Interface Sci 333:152–163. doi:10.1016/j.jcis.2009.01.064

    Article  CAS  Google Scholar 

  4. Feng Y, Billon L, Grassl B, Khoukh A, François J (2002) Hydrophobically associating polyacrylamides and their partially hydrolyzed derivatives prepared by post-modification. 1. Synthesis and characterization. Polymer 43:2055–2064. doi:10.1016/S0032-3861(01)00774-1

    Article  CAS  Google Scholar 

  5. Effing JJ, McLennan IJ, van Os NM, Kwak JCT (1994) 1H NMR investigations of the interactions between anionic surfactants and hydrophobically modified poly(acrylamide)s. J Phys Chem 98:12397–12402. doi:10.1021/j100098a039

    Article  CAS  Google Scholar 

  6. Yahaya GO, Ahdab AA, Ali SA, Abu-Sharkh BF, Hamad EZ (2001) Solution behavior of hydrophobically associating water-soluble block copolymers of acrylamide and N-benzylacrylamide. Polymer 42:3363–3372. doi:10.1016/S0032-3861(2800)2900711-4

    Article  CAS  Google Scholar 

  7. Zhu Z, Jian O, Paillet S, Desbrières J, Grassl B (2007) Hydrophobically modified associating polyacrylamide (HAPAM) synthesized by micellar copolymerization at high monomer concentration. Eur Polym J 43:824–834. doi:10.1016/j.eurpolymj.2006.12.016

    Article  CAS  Google Scholar 

  8. Xue W, Hamley IW, Castelletto V, Olmsted PD (2004) Synthesis and characterization of hydrophobically modified polyacrylamides and some observations on rheological properties. Eur Polym J 40:47–56. doi:10.1016/j.eurpolymj.2003.09.014

    Article  CAS  Google Scholar 

  9. Ma J, Cui P, Zhao L, Huang R (2002) Synthesis and solution behavior of hydrophobic association water-soluble polymers containing aryl alkyl group. Eur Polym J 38:1627–1633. doi:10.1016/S0014-3057(02)00034-4

    Article  CAS  Google Scholar 

  10. Feng Y, Billon L, Grassl B, Bastiat G, Borisov O, François J (2005) Hydrophobically associating polyacrylamides and their partially hydrolyzed derivatives prepared by post-modification. 2. Properties of non-hydrolyzed polymers in pure water and brine. Polymer 46:9283–9295. doi:10.1016/j.polymer.2005.07.054

    Article  CAS  Google Scholar 

  11. Volpert E, Selb J, Candau F (1996) Influence of the hydrophobe structure on composition, microstructure, and rheology in associating polyacrylamides prepared by micellar copolymerization. Macromolecules 29:1452–1463. doi:10.1021/ma951178m

    Article  CAS  Google Scholar 

  12. Iyer NP, Hourdet D, Badiger MV, Chassenieux C, Perrin P, Wadgaonkar PP (2005) Synthesis and swelling behaviour of hydrophobically modified responsive polymers in dilute aqueous solutions. Polymer 46:12190–12199. doi:10.1016/j.polymer.2005.10.140

    Article  CAS  Google Scholar 

  13. Borsali R, Nguyen H, Pecora R (1998) Small-angle neutron scattering and dynamic light scattering from a polyelectrolyte solution: DNA. Macromolecules 31:1548–1555. doi:10.1021/ma970919b

    Article  CAS  Google Scholar 

  14. McCormick CL, Middleton JC, Cummins DF (1992) Water-soluble copolymers. 37. Synthesis and characterization of responsive hydrophobically-modified polyelectrolytes. Macromolecules 25:1201–1206

    Article  CAS  Google Scholar 

  15. Biggs S, Selb J, Candau F (1993) Copolymers of acrylamide/N-alkylacrylamide in aqueous solution: the effects of hydrolysis on hydrophobic interactions. Polymer 34:580–591. doi:10.1016/0032-3861(93)90554-N

    Article  CAS  Google Scholar 

  16. Wever DAZ, Picchioni F, Broekhuis AA (2011) Polymers for enhanced oil recovery: a paradigm for structure-property relationship in aqueous solution. Prog Polym Sci 36:1558–1628. doi:10.1016/j.progpolymsci.2011.05.006

    Article  CAS  Google Scholar 

  17. Argillier JF, Audibert A, Lecourtier J, Moan M, Rousseau L (1996) Solution and adsorption properties of hydrophobically associating water-soluble polyacrylamides. Colloids Surf A 113:247–257. doi:10.1016/0927-7757(96)03575-3

    Article  CAS  Google Scholar 

  18. Taylor KC, Nasr-El-Din HA (1994) Acrylamide copolymers: a review of methods for the determination of concentration and degree of hydrolysis. J Pet Sci Eng 12:9–23. doi:10.1016/0920-4105(94)90003-5

    Article  CAS  Google Scholar 

  19. Kurenkov VF, Hartan H-G, Lobanov FI (2001) Alkaline hydrolysis of polyacrylamide. Russ J Appl Chem 74:543–554. doi:10.1023/A:1012786826774

    Article  CAS  Google Scholar 

  20. Carey FA (1996) Organic chemistry. McGraw-Hill, New York

    Google Scholar 

  21. Seright RS, Campbell AR, Mozley PS (2009) Stability of partially hydrolyzed polyacrylamides at elevated temperatures in the absence of divalent cations. Soc Pet Eng 15:341–348. doi:10.2118/121460-PA

    Google Scholar 

  22. Suh Su K, Chapin SC, Hatton TA, Doyle PS (2012) Synthesis of magnetic hydrogel microparticles for bioassays and tweezer manipulation in microwells. Microfluid Nanofluid 13:665–674. doi:10.1007/s10404-012-0977-8

    Article  Google Scholar 

  23. Al-Muntasheri GA, Nasr-El-Din HA, Peters JA, Zitha PLJ (2008) Thermal decomposition and hydrolysis of polyacrylamide-co-tert-butyl acrylate. Eur Polym J 44:1225–1237. doi:10.1016/j.eurpolymj.2008.01.022

    Article  CAS  Google Scholar 

  24. Gershater MC, Edwards R (2007) Regulating biological activity in plants with carboxylesterases. Plant Sci 173:579–588. doi:10.1016/j.plantsci.2007.08.008

    Article  CAS  Google Scholar 

  25. Fluck RA, Leber PA, Lieser JD et al (2000) Choline conjugates of auxins. I. Direct evidence for the hydrolysis of choline-auxin conjugates by pea cholinesterase. Plant Physiol Biochem 38:301–308. doi:10.1016/S0981-9428(00)00742-7

    Article  CAS  Google Scholar 

  26. Fujisawa S, Kadoma Y (2012) Relationships between base-catalyzed hydrolysis rates or glutathione reactivity for acrylates and methacrylates and their NMR spectra or heat of formation. Int J Mol Sci 13:5789–5800. doi:10.3390/ijms13055789

    Article  CAS  Google Scholar 

  27. Rabiee A, Zeynali ME, Baharvand H (2005) Synthesis of high molecular weight partially hydrolyzed polyacrylamide and investigation on its properties. Iran Polym J 14:603–608

    CAS  Google Scholar 

  28. Maia AMS, Villetti MA, Vidal RRL, Borsali R, Balaban RC (2011) Solution properties of a hydrophobically associating polyacrylamide and its polyelectrolyte derivatives determined by light scattering, small angle X-ray scattering and viscometry. J Braz Chem Soc 22:489–500. doi:10.1590/S0103-50532011000300012

    Article  CAS  Google Scholar 

  29. Vidal RRL, Fagundes FP, Menezes SMC, Ruiz NMS, Garcia RB (2005) Solution properties of partially hydrolysed polyacrylamide and chitosan mixed solutions. Macromol Symp 229:118–126. doi:10.1002/masy.200551114

    Article  CAS  Google Scholar 

  30. De Gennes PG, Pincus P, Velasco RM, Brochard F (1976) Remarks on polyelectrolyte conformation. J Phys 37:1461–1473. doi:10.1051/jphys:0197600370120146100

    Article  Google Scholar 

  31. De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca, New York

    Google Scholar 

  32. Dobrynin AV, Colby RH, Rubinstein M (1995) Scaling theory of polyelectrolyte solutions. Macromolecules 28:1859–1871. doi:10.1021/ma00110a021

    Article  CAS  Google Scholar 

  33. Dou S, Colby RH (2008) Solution rheology of a strongly charged polyelectrolyte in good solvent. Macromolecules 41:6505–6510. doi:10.1021/ma8001438

    Article  CAS  Google Scholar 

  34. Johnson S, Trejo J, Veisi M, Willhite GP, Liang J-T, Cory B (2010) Effects of divalents cations, seawater, and formation brine on positively charged polyethylenimine/dextran sulfate/chromium(III) polyelectrolyte complexes and partially hydrolyzed polyacrylamide/chromium(III) gelation. J Appl Polym Sci 115:1008–1014. doi:10.1002/app.31052

    Article  CAS  Google Scholar 

  35. Abraham T (2002) Effects of divalent salt on adsorption kinetics of a hydrophobically modified polyelectrolyte at the neutral surface-aqueous solution interface. Polymer 43:849–855. doi:10.1016/S0032-3861(01)00647-4

    Article  CAS  Google Scholar 

  36. Chiappa L, Mennella A, Lockhart TP, Burrafato G (1999) Polymer adsorption at the brine/rock interface: the role of electrostatic interactions and wettability. J Pet Sci Eng 24:113–122. doi:10.1016/S0920-4105(99)00035-2

    Article  CAS  Google Scholar 

  37. François J, Truong ND, Medjahdi G, Mestdaght MM (1997) Aqueous solutions of acrylamide-acrylic acid copolymers: stability in the presence of alkalinoearth cations. Polymer 38:6115–6127. doi:10.1016/S0032-3861(97)00165-1

    Article  Google Scholar 

  38. Muller G (1981) Thermal stability of high-molecular-weight polyacrylamide aqueous solutions. J Polym Bull 5:31–37. doi:10.1007/BF00255084

    CAS  Google Scholar 

  39. Maia AMS, Costa M, Borsali R, Garcia RB (2005) Rheological behavior and scattering studies of acrylamide-based copolymer solutions. Macromol Symp 229:217–227. doi:10.1002/masy.200551127

    Article  CAS  Google Scholar 

  40. Ghazy R, El-Baradie B, El-Shaer A, El-Mekawey F (1999) Opt Laser Technol 31:447–453. doi:10.1016/S0030-3992(99)00094-8

    Article  CAS  Google Scholar 

  41. Xia X, Hu Z (2004) Synthesis and light scattering study of microgels with interpenetrating polymer networks. Langmuir 20:2094–2098. doi:10.1021/la0354483

    Article  CAS  Google Scholar 

  42. Chen X, Ayres N (2011) Synthesis of low grafting density molecular brush from a poly(N-alkyl urea peptoid) backbone. J Polym Sci A Polym Chem 49:3030–3037. doi:10.1002/pola. 24739

    Article  CAS  Google Scholar 

  43. Ioan CE, Aberle T, Burchard W (2001) Light scattering and viscosity behavior of dextran in semidilute solution. Macromolecules 34:326–336. doi:10.1021/ma992060z

    Article  CAS  Google Scholar 

  44. Kulicke W-M, Clasen C (2004) Viscosimetry of polymers and polyelectrolytes. Springer, Germany

    Book  Google Scholar 

  45. Villetti M, Borsali R, Diat O, Soldi V, Fukada K (2000) SAXS from polyelectrolyte solutions under shear: xanthan and Na-hyaluronate examples. Macromolecules 33:9418–9422. doi:10.1021/ma000971z

    Article  CAS  Google Scholar 

  46. Lewandowska K (2007) Comparative studies of rheological properties of polyacrylamide and partially hydrolyzed polyacrylamide solutions. J Appl Polym Sci 103:2235–2241. doi:10.1002/app.25247

    Article  CAS  Google Scholar 

  47. Nasr-El-Din HA, Taylor KC (1996) Rheology of water-soluble polymers used for improved oil recovery. In: Advances in Engineering Fluid Mechanics: Multiphase Reactor and Polymerization System Hydrodynamics. Gulf Professional Publishing, pp 615-668

  48. Feng Y, Grassl B, Billon L, Khoukh A, François J (2002) Effects of NaCl on steady rheological behaviour in aqueous solutions of hydrophobically modified polyacrylamide and its partially hydrolyzed analogues prepared by post-modification. Polym Int 51:939–947. doi:10.1002/pi.959

    Article  CAS  Google Scholar 

  49. Noda T, Hashidzume A, Morishima Y (2001) Rheological properties of transient networks formed from copolymers of sodium acrylate and methacrylates substituted with amphiphiles: comparison with sodium 2-(acrylamido)-2-methylpropanesulfonate copolymers. Langmuir 17:5984–5991

    Article  CAS  Google Scholar 

  50. Lacík I, Selb J, Candau F (1995) Compositional heterogeneity effects in hydrophobically associating water-soluble polymers prepared by micellar copolymerization. Polymer 36:3197–3211. doi:10.1016/0032-3861(95)97884-I

    Article  Google Scholar 

  51. Kujawa P, Audibert-Hayet A, Selb J, Candau F (2006) Effect of ionic strength on the rheological properties of multisticker associative polyelectrolytes. Macromolecules 39:384–392. doi:10.1021/ma051312v

    Article  CAS  Google Scholar 

  52. Durand A (2007) Aqueous solutions of amphiphilic polysaccharides: concentration and temperature effect on viscosity. Eur Polym J 43:1744–1753. doi:10.1016/j.eurpolymj.2007.02.031

    Article  CAS  Google Scholar 

  53. Ng WK, Tam KC, Jenkins RD (2001) Rheological properties of methacrylic acid/ethyl acrylate co-polymer: comparison between an unmodified and hydrophobically modified system. Polymer 42:249–259. doi:10.1016/S0032-3861(00)00280-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to FINEP, PETROBRAS, and FAPERGS (Pronex 10/0005-1) for the financial support and to ABTLus for the use of LNLS facilities (Project D11A-SAXS1 n° 7660/08) in Campinas—Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosangela C. Balaban.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 919 kb)

ESM 2

(DOCX 978 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, B.V., Vidal, R.R.L., Villetti, M.A. et al. Solution properties of poly(acrylamide-co-3,5,5-trimethylhexane methacrylate) and its polyelectrolyte derivative. Colloid Polym Sci 292, 2123–2135 (2014). https://doi.org/10.1007/s00396-014-3242-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3242-8

Keywords

Navigation