Skip to main content
Log in

The strain-sensing behaviors of carbon black/polypropylene and carbon nanotubes/polypropylene conductive composites prepared by the vacuum-assisted hot compression

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The strain-sensing behaviors of carbon black (CB)/polypropylene (PP) and carbon nanotubes (CNTs)/PP conductive composites prepared by the vacuum-assisted hot compression were studied and compared. When ten extension-retraction cycles were applied, it was found for CB/PP, the value of the maximum responsivity (ΔR/R 0, ΔR—the instantaneous variation of the resistance during the test, R 0—the original resistance) decreased gradually with increasing the cycle number, but it began to rise from the seventh cycle. The value of the min ΔR/R 0 increased during the whole test. While for CNTs/PP, both the values of the max and min ΔR/R 0 decreased rapidly. It is suggested that the different behaviors mainly depend on the distinction in the dimension of the conductive fillers and the preparation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bigg DM, Mirick W, Stutz DE (1985) Polym Test 5:169

    Article  Google Scholar 

  2. Tang H, Piao JH, Chen XF, Luo YX, Li SH (1993) J Appl Polym Sci 48:1795

    Article  CAS  Google Scholar 

  3. Kim J, Kang PH, Nho YC (2004) J Appl Polym Sci 92:394

    Article  CAS  Google Scholar 

  4. Villmow T, Pegel S, Pötschke P, Heinrich G (2011) Polymer 52:2276

    Article  CAS  Google Scholar 

  5. Kobashi K, Villmow T, Andres M, Pötschke P (2008) Sensors Actuators B Chem 134:787

    Article  CAS  Google Scholar 

  6. Das NC, Chaki TK, Khastgir D (2002) Carbon 40:807

    Article  CAS  Google Scholar 

  7. Lu JR, Weng WG, Chen XF, Wu DJ, Wu CL, Chen GH (2005) Adv Funct Mater 15:1358

    Article  CAS  Google Scholar 

  8. Dai K, Li ZM, Xu XB (2008) Polymer 49:1037

    Article  CAS  Google Scholar 

  9. Das NC, Khastgir D, Chaki TK, Chakraborty A (2000) Compos A Appl Sci Manuf 31:1069

    Article  Google Scholar 

  10. Isaji S, Bin YZ, Matsuo M (2009) J Polym Sci B Polym Phys 47:1253

    Article  CAS  Google Scholar 

  11. Knite M, Teteris V, Kiploka A, Kaupuzs J (2004) Sensors Actuators A Phys 110:142

    Article  CAS  Google Scholar 

  12. Dai K, Zhang YC, Tang JH, Ji X, Li ZM (2012) J Appl Polym Sci 124:4466

    CAS  Google Scholar 

  13. Fathi A, Hatami K, Grady BP (2012) Polym Eng Sci 52:549

    Article  CAS  Google Scholar 

  14. Cravanzola S, Haznedar G, Scarano D, Zecchina A, Cesano F (2013) Carbon 62:270

    Article  CAS  Google Scholar 

  15. Kang I, Schulz MJ, Kim JH, Shanov V, Shi DL (2006) Smart Mater Struct 15:737

    Article  CAS  Google Scholar 

  16. Das NC, Chaki TK, Khastgir D (2002) Polym Int 51:156

    Article  CAS  Google Scholar 

  17. Wichmann MHG, Buschhorn ST, Gehrmann J, Schulte K (2009) Phys Rev B 80:245437

    Article  CAS  Google Scholar 

  18. Zhao JH, Dai K, Liu CG, Zheng GQ, Wang B, Liu CT, Chen JB, Shen CY (2013) Compos A Appl Sci Manuf 48:129

    Article  CAS  Google Scholar 

  19. Pang H, Chen T, Zhang GM, Zeng BQ, Li ZM (2010) Mater Lett 64:2226

    Article  CAS  Google Scholar 

  20. Pang H, Bao Y, Xu L, Yan DX, Zhang WQ, Wang JH, Li ZM (2013) J Mater Chem A 1:4177

    Article  CAS  Google Scholar 

  21. Gao DL, Zhan MS (2010) Polym Compos 31:1084

    Article  CAS  Google Scholar 

  22. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J (1996) Science 273:483

    Article  CAS  Google Scholar 

  23. Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH (1999) Polymer 40:5967

    Article  CAS  Google Scholar 

  24. Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297:787

    Article  CAS  Google Scholar 

  25. Xin F, Li L, Chan SH, Zhao JH (2012) J Compos Mater 46:1091

    Article  CAS  Google Scholar 

  26. Berkowitz B (1995) Math Geol 27:467

    Article  Google Scholar 

  27. Barone JR (2005) Compos Part A 36:1518

    Article  CAS  Google Scholar 

  28. Jose S, Aprem AS, Francis B, Chandy MC, Werner P, Alstaedt V, Thomas S (2004) Eur Polym J 40:2105

    Article  CAS  Google Scholar 

  29. Huang JC (2002) Adv Polym Technol 21:299

    Article  CAS  Google Scholar 

  30. Meyer J (1974) Polym Eng Sci 14:706

    Article  CAS  Google Scholar 

  31. Castillo-Castro TD, Castillo-Ortega MM, Herrera-Franco PJ (2009) Compos A Appl Sci Manuf 40:1573

    Article  CAS  Google Scholar 

  32. Ogasawara T, Tsuda T, Takeda N (2011) Compos Sci Technol 71:73

    Article  CAS  Google Scholar 

  33. Shen XH, Xia ZH, Ellyin F (2004) Polym Eng Sci 44:2240

    Article  CAS  Google Scholar 

  34. Ariyama T (1995) Polym Eng Sci 35:1455

    Article  CAS  Google Scholar 

  35. Oliva-Avilés AI, Avilés F, Sosa V (2011) Carbon 49:2989

    Article  CAS  Google Scholar 

  36. Simmons GJ (1963) J Appl Phys 34:1793

    Article  Google Scholar 

  37. Sheng P, Sichel EK, Gittleman JL (1978) Phys Rev Lett 40:1197

    Article  CAS  Google Scholar 

  38. Aneli JN, Zaikov GE, Khananashvili LM (1999) J Appl Polym Sci 74:601

    Article  CAS  Google Scholar 

  39. Lin L, Deng H, Gao X, Zhang SM, Bilotti E, Peijsb T, Qiang F (2013) Polym Int 62:134

    Article  CAS  Google Scholar 

  40. Deng H, Zhang R, Reynolds CT, Bilotti E, Peijs T (2009) Macromol Mater Eng 294:749

    Article  CAS  Google Scholar 

  41. Shui XP, Chung DDL (1996) Smart Mater Struct 5:243

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of this work by China Postdoctoral Science Foundation (Contract Number: 20110491003, 2012 T50638); National Natural Science Foundation of China-Henan Talents Fostering joint Funds (Contract Number: U1204507) and National Program on Key Basic Research Project (973 Program, Contract Number: 2012CB025903).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Dai or Changyu Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, Y., Dai, K., Zhao, J. et al. The strain-sensing behaviors of carbon black/polypropylene and carbon nanotubes/polypropylene conductive composites prepared by the vacuum-assisted hot compression. Colloid Polym Sci 292, 945–951 (2014). https://doi.org/10.1007/s00396-013-3143-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-3143-2

Keywords

Navigation