Skip to main content
Log in

Inclusion complexes of rosmarinic acid and cyclodextrins: stoichiometry, association constants, and antioxidant potential

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The interaction between β-cyclodextrin (β-CD) and the polyphenol rosmarinic acid (RA) is here reported by 1H NMR titration experiments. The formation of an aqueous soluble inclusion complex is confirmed and valuable information regarding mode of penetration of guest into β-CD, stoichiometry, and stability of the complex is obtained. The analysis by the continuous variation method shows the undoubted formation of 1:1 β-CD/RA complex. Additionally, the estimated apparent association constants reveal the importance of the asymmetry of the RA in the complexation; the incorporation of the catechol moiety closer to the carboxylic group is more favorable (K = 2,028 M−1) than from the other end of the RA molecule (K = 1,184 M−1). Finally, we have also investigated the antioxidant activity and storage stability of the β-CD/RA complexed system; the presence of β-CD was found to produce a remarkable enhancement on the antioxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li S, Purdy WC (1992) Cyclodextrins and their applications in analytical-chemistry. Chem Rev 92(6):1457–1470. doi:10.1021/Cr00014a009

    Article  CAS  Google Scholar 

  2. Uekama K, Hirayama F, Irie T (1998) Cyclodextrin drug carrier systems. Chem Rev 98(5):2045–2076. doi:10.1021/Cr970025p

    Article  CAS  Google Scholar 

  3. Saenger WR, Jacob J, Gessler K, Steiner T, Hoffmann D, Sanbe H, Koizumi K, Smith SM, Takaha T (1998) Structures of the common cyclodextrins and their larger analogues—beyond the doughnut. Chem Rev 98(5):1787–1802. doi:10.1021/Cr9700181

    Article  CAS  Google Scholar 

  4. Marques HMC (2010) A review on cyclodextrin encapsulation of essential oils and volatiles. Flavor Fragr J 25(5):313–326. doi:10.1002/Ffj.2019

    Article  Google Scholar 

  5. Dong HQ, Li YY, Li L, Shi DL (2011) Cyclodextrins/polymer based (pseudo) polyrotaxanes for biomedical applications. Prog Chem 23:914–922

    CAS  Google Scholar 

  6. Zhao JL, Lv Y, Ren HJ, Sun W, Liu Q, Fu YL, Wang LY (2013) Synthesis, spectral properties of cyanine dyes-beta-cyclodextrin and their application as the supramolecular host with spectroscopic probe. Dyes Pigments 96:180–188

    Article  CAS  Google Scholar 

  7. Maffeo D, Leondiadis L, Mavridis IM, Yannakopoulou K (2006) Positive effect of natural and negatively charged cyclodextrins on the stabilization of penicillins towards beta-lactamase degradation due to inclusion and external guest–host association. An NMR and MS study. Org Biomol Chem 4(7):1297–1304. doi:10.1039/B517275f

    Article  CAS  Google Scholar 

  8. Cabaleiro-Lago C, Nilsson M, Valente AJM, Bonini M, Soderman O (2006) NMR diffusometry and conductometry study of the host–guest association between beta-cyclodextrin and dodecane 1,12-bis(trimethylammonium bromide). J Colloid Interf Sci 300(2):782–787. doi:10.1016/j.jcis.2006.04.016

    Article  CAS  Google Scholar 

  9. Valente AJM, Nilsson M, Soderman O (2005) Interactions between n-octyl and n-nonyl beta-D-glucosides and alpha- and beta-cyclodextrins as seen by self-diffusion NMR. J Colloid Interf Sci 281(1):218–224. doi:10.1016/j.jcis.2004.08.018

    Article  CAS  Google Scholar 

  10. Monti S, Sortino S (2002) Photoprocesses of photosensitizing drugs within cyclodextrin cavities. Chem Soc Rev 31(5):287–300. doi:10.1039/B106751f

    Article  CAS  Google Scholar 

  11. Jiang LX, Yan Y, Huang JB (2011) Versatility of cyclodextrins in self-assembly systems of amphiphiles. Adv Colloid Interf Sci 169:13–25

    Article  CAS  Google Scholar 

  12. Jullian C, Miranda S, Zapata-Torres G, Mendizabal F, Olea-Azar C (2007) Studies of inclusion complexes of natural and modified cyclodextrin with (+)catechin by NMR and molecular modeling. Bioorg Med Chem 15(9):3217–3224. doi:10.1016/j.bmc.2007.02.035

    Article  CAS  Google Scholar 

  13. Clarke RJ, Coates JH, Lincoln SF (1988) Inclusion complexes of the cyclomalto-oligosaccharides (cyclodextrins). Adv Carbohydr Chem Bi 46:205–249. doi:10.1016/S0065-2318(08)60167-5

    Article  CAS  Google Scholar 

  14. Connors KA (1997) The stability of cyclodextrin complexes in solution. Chem Rev 97(5):1325–1357. doi:10.1021/Cr960371r

    Article  CAS  Google Scholar 

  15. Szejtli J, Osa T (1996) Comprehensive supramolecular chemistry: Cyclodextrins. In, vol Vol. 3. Oxford: Elsevier

  16. Miyazawa I, Ueda H, Nagase H, Endo T, Kobayashi S, Nagai T (1995) Physicochemical properties and inclusion complex-formation of delta-cyclodextrin. Eur J Pharm Sci 3(3):153–162. doi:10.1016/0928-0987(95)00006-Y

    Article  CAS  Google Scholar 

  17. Medronho B, Andrade R, Vivod V, Ostlund A, Miguel MG, Lindman B, Voncina B, Valente AJM (2013) Cyclodextrin-grafted cellulose: physicochemical characterization. Carbohydr Polym 93:324–330

    Article  CAS  Google Scholar 

  18. Szente L, Szejtli J (2004) Cyclodextrins as food ingredients. Trends Food Sci Technol 15(3-4):137–142. doi:10.1016/j.tifs.2003.09.019

    Article  CAS  Google Scholar 

  19. Szejtli J, Szente L (2005) Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur J Pharm Biopharm 61(3):115–125. doi:10.1016/j.ejpb.2005.05.006

    Article  CAS  Google Scholar 

  20. Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gandara J (2009) A review on the use of cyclodextrins in foods. Food Hydrocoll 23:1631–1640

    Article  CAS  Google Scholar 

  21. Fang ZX, Bhandari B (2010) Encapsulation of polyphenols—a review. Trends Food Sci Technol 21:510–523

    Article  CAS  Google Scholar 

  22. Loftsson T, Brewster ME (2010) Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol 62:1607–1621

    Article  CAS  Google Scholar 

  23. Messner M, Kurkov SV, Jansook P, Loftsson T (2010) Self-assembled cyclodextrin aggregates and nanoparticles. Int J Pharm 387:199–208

    Article  CAS  Google Scholar 

  24. Buschmann HJ, Schollmeyer E (2002) Applications of cyclodextrins in cosmetic products: a review. J Cosmet Sci 53:185–191

    CAS  Google Scholar 

  25. Mercader-Ros MT, Lucas-Abellan C, Fortea MI, Gabaldon JA, Nunez-Delicado E (2010) Effect of HP-beta-cyclodextrins complexation on the antioxidant activity of flavonols. Food Chem 118(3):769–773. doi:10.1016/j.foodchem.2009.05.061

    Article  CAS  Google Scholar 

  26. Alvarez-Parrilla E, De la Rosa LA, Torres-Rivas F, Rodrigo-Garcia J, Gonzalez-Aguilar GA (2005) Complexation of apple antioxidants: Chlorogenic acid, quercetin, and rutin by beta-cyclodextrin (beta-CD). J Incl Phenom Macro 53(1-2):121–129. doi:10.1007/s10847-005-1620-z

    Article  CAS  Google Scholar 

  27. Handique JG, Baruah JB (2002) Polyphenolic compounds: an overview. React Funct Polym 52(3):163–188. doi:10.1016/s1381-5148(02)00091-3

    Article  CAS  Google Scholar 

  28. Lu Z, Chen R, Liu H, Hu Y, Cheng B, Zou GL (2009) Study of the complexation of resveratrol with cyclodextrins by spectroscopy and molecular modeling. J Incl Phenom Macro 63(3-4):295–300. doi:10.1007/s10847-008-9522-5

    Article  CAS  Google Scholar 

  29. Jullian C, Cifuentes C, Alfaro M, Miranda S, Barriga G, Olea-Azar C (2010) Spectroscopic characterization of the inclusion complexes of luteolin with native and derivatized beta-cyclodextrin. Bioorg Med Chem 18(14):5025–5031. doi:10.1016/j.bmc.2010.05.079

    Article  CAS  Google Scholar 

  30. Lopez-Nicolas JM, Rodriguez-Bonilla P, Garcia-Carmona F (2009) Complexation of pinosylvin, an analogue of resveratrol with high antifungal and antimicrobial activity, by different types of cyclodextrins. J Agric Food Chem 57(21):10175–10180. doi:10.1021/Jf902519d

    Article  CAS  Google Scholar 

  31. Alvarez-Parrilla E, Palos R, de la Rosa LA, Frontana-Uribe BA, Gonzalez-Aguilar GA, Machi L, Ayala-Zavala JF (2010) Formation of two 1:1 chlorogenic acid: beta-cyclodextrin complexes at pH5: spectroscopic, thermodynamic, and voltammetric study. J Mex Chem Soc 54(2):103–110

    CAS  Google Scholar 

  32. Lu Z, Cheng B, Hu YL, Zhang YH, Zou GL (2009) Complexation of resveratrol with cyclodextrins: solubility and antioxidant activity. Food Chem 113(1):17–20. doi:10.1016/j.foodchem.2008.04.042

    Article  CAS  Google Scholar 

  33. Munin A, Edwards-Lévy F (2011) Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics 3:793–829

    Article  CAS  Google Scholar 

  34. Shetty K (2005) Rosmarinic acid biosynthesis and mechanism of action. In: Shetty, K., Paliyath, G., Pometto, A.L., III, Levin, R.E. (Eds.). In: second, Ed. CRC Press BR, pp. 825-845. (eds) Food Biotechnology

  35. Tepe B, Eminagaoglu O, Akpulat HA, Aydin E (2007) Antioxidant potentials and rosmarinic acid levels of the methanolic extracts of Salvia verticillata (L.) subsp verticillata and S-verticillata (L.) subsp amasiaca (Freyn & Bornm.) Bornm. Food Chem 100(3):985–989. doi:10.1016/j.foodchem.2005.10.062

    Article  CAS  Google Scholar 

  36. Costa P, Goncalves S, Valentao P, Andrade PB, Coelho N, Romano A (2012) Thymus lotocephalus wild plants and in vitro cultures produce different profiles of phenolic compounds with antioxidant activity. Food Chem 135(3):1253–1260. doi:10.1016/j.foodchem.2012.05.072

    Article  CAS  Google Scholar 

  37. Costa P, Goncalves S, Andrade PB, Valentao P, Romano A (2011) Inhibitory effect of Lavandula viridis on Fe2+-induced lipid peroxidation, antioxidant, and anti-cholinesterase properties. Food Chem 126(4):1779–1786. doi:10.1016/j.foodchem.2010.12.085

    Article  CAS  Google Scholar 

  38. Chu X, Ci XX, He JK, Jiang LX, Wei MM, Cao QJ, Guan MF, Xie XX, Deng XM, He JK (2012) Effects of a natural prolyl oligopeptidase inhibitor, rosmarinic acid, on lipopolysaccharide-induced acute lung injury in mice. Molecules 17(3):3586–3598. doi:10.3390/molecules17033586

    Article  CAS  Google Scholar 

  39. Osakabe N, Takano H, Sanbongi C, Yasuda A, Yanagisawa R, Inoue K, Yoshikawa T (2004) Anti-inflammatory and anti-allergic effect of rosmarinic acid (RA); inhibition of. Biofactors 21:127–131

    Article  CAS  Google Scholar 

  40. Moon DO, Kim MO, Lee JD, Choi YH, Kim GY (2010) Rosmarinic acid sensitizes cell death through suppression of TNF-alpha-induced NF-kappa B activation and ROS generation in human leukemia U937 cells. Cancer Lett 288(2):183–191. doi:10.1016/j.canlet.2009.06.033

    Article  CAS  Google Scholar 

  41. Moreno S, Scheyer T, Romano CS, Vojnov AA (2006) Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic Res 40(2):223–231. doi:10.1080/10715760500473834

    Article  CAS  Google Scholar 

  42. Ono K, Li L, Takamura Y, Yoshiike Y, Zhu LJ, Han F, Mao X, Ikeda T, Takasaki J, Nishijo H, Takashima A, Teplow DB, Zagorski MG, Yamada M (2012) Phenolic compounds prevent amyloid beta-protein oligomerization and synaptic dysfunction by site-specific binding. J Biol Chem 287(18):14631–14643. doi:10.1074/jbc.M111.325456

    Article  CAS  Google Scholar 

  43. Schneider HJ, Hacket F, Rudiger V, Ikeda H (1998) NMR studies of cyclodextrins and cyclodextrin complexes. Chem Rev 98(5):1755–1785. doi:10.1021/Cr970019t

    Article  CAS  Google Scholar 

  44. Celik SE, Ozyurek M, Tufan AN, Guclu K, Apak R (2011) Spectroscopic study and antioxidant properties of the inclusion complexes of rosmarinic acid with natural and derivative cyclodextrins. Spectrochim Acta A 78(5):1615–1624. doi:10.1016/j.saa.2011.02.017

    Article  Google Scholar 

  45. Ou BX, Hampsch-Woodill M, Prior RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49(10):4619–4626. doi:10.1021/Jf010586o

    Article  CAS  Google Scholar 

  46. Prior RL, Wu XL, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53(10):4290–4302. doi:10.1021/Jf0502698

    Article  CAS  Google Scholar 

  47. Carvalho RA, Correia HA, Valente AJM, Soderman O, Nilsson M (2011) The effect of the head-group spacer length of 12-s-12 gemini surfactants in the host–guest association with beta-cyclodextrin. J Colloid Interf Sci 354(2):725–732. doi:10.1016/j.jcis.2010.11.024

    Article  CAS  Google Scholar 

  48. Ali SM, Maheshwari A, Asmat F, Koketsu M (2006) Complexation of enalapril maleate with β-cyclodextrin: NMR spectroscopic study in solution. Quim Nova 29:685–688

    Article  CAS  Google Scholar 

  49. Lu YR, Foo LY (1999) Rosmarinic acid derivatives from Salvia officinalis. Phytochemistry 51(1):91–94. doi:10.1016/S0031-9422(98)00730-4

    Article  CAS  Google Scholar 

  50. Fale PL, Borges C, Madeira PJA, Ascensao L, Araujo MEM, Florencio MH, Serralheiro MLM (2009) Rosmarinic acid, scutellarein 4 '-methyl ether 7-O-glucuronide and (16S)-coleon E are the main compounds responsible for the antiacetylcholinesterase and antioxidant activity in herbal tea of Plectranthus barbatus ("falso boldo"). Food Chem 114(3):798–805. doi:10.1016/j.foodchem.2008.10.015

    Article  CAS  Google Scholar 

  51. Ozgen U, Mavi A, Terzi Z, Kazaz C, Asci A, Kaya Y, Secen H (2011) Relationship between chemical structure and antioxidant activity of luteolin and its glycosides isolated from Thymus sipyleus subsp sipyleus var. sipyleus. Rec Nat Prod 5(1):12–21

    CAS  Google Scholar 

  52. Gagnaire D, Horton D, Taravel FR (1973) Derivatives of 6-deuterio-d-glucose, absolute-configuration at C-6, and steric disposition of an acetoxymethyl group. Carbohydr Res 27(2):363–372. doi:10.1016/S0008-6215(00)81318-X

    Article  CAS  Google Scholar 

  53. Plot J (1928) Ann Chim 9:113

    Google Scholar 

  54. Djedaini F, Lin SZ, Perly B, Wouessidjewe D (1990) High-field nuclear-magnetic-resonance techniques for the investigation of a beta-cyclodextrin-indomethacin Inclusion complex. J Pharm Sci 79(7):643–646. doi:10.1002/jps.2600790721

    Article  CAS  Google Scholar 

  55. Yamamoto Y, Inoue Y (1989) NMR-studies of cyclodextrin inclusion complex. J Carbohydr Chem 8(1):29–46. doi:10.1080/07328308908047990

    Article  CAS  Google Scholar 

  56. Greatbanks D, Pickford R (1987) Cyclodextrins as chiral complexing agents in water, and their application to optical purity measurements. Magn Reson Chem 25(3):208–215. doi:10.1002/mrc.1260250306

    Article  CAS  Google Scholar 

  57. Ganza-Gonzalez A, Vila-Jato JL, Anguiano-Igea S, Otero-Espinar FJ, Blanco-Méndez J (1994) Int J Pharm 106:179

    Article  CAS  Google Scholar 

  58. Garcia-Rio L, Godoy A, Leis JR (2005) Chem Phys Lett 401:302–306

    Article  CAS  Google Scholar 

  59. Liu L, Guo QX (1999) J Phys Chem B 103:3461–3467

    Article  CAS  Google Scholar 

  60. Rubio F, Garcia F, Burrows HD, Pais AACC, Valente AJM, Tapia MJ, Garcia JM (2007) Aqueous solution and solid state interactions of lanthanide ions with a methacrylic ester polymer bearing pendant 15-crown-5 moieties. J Polym Sci Pol Chem 45(9):1788–1799. doi:10.1002/Pola.21946

    Article  CAS  Google Scholar 

  61. Cabrer PR, Azvarez-Parrilla E, Meijide F, Seijas JA, Nunez ER, Tato JV (1999) Complexation of sodium cholate and sodium deoxycholate by beta-cyclodextrin and derivatives. Langmuir 15(17):5489–5495

    Article  Google Scholar 

  62. Benesi HA, Hildebrand JH (1949) J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

  63. Martin RB (1997) Disadvantages of double reciprocal plots. J Chem Educ 74(10):1238–1240

    Article  CAS  Google Scholar 

  64. Irwin PL, Pfeffer PE, Doner LW, Sapers GM, Brewster JD, Nagahashi G, Hicks KB (1994) Binding geometry, stoichiometry, and thermodynamics of cyclomalto-oligosaccharide (cyclodextrin) inclusion complex-formation with chlorogenic acid, the major substrate of apple polyphenol oxidase. Carbohydr Res 256(1):13–27. doi:10.1016/0008-6215(94)84223-X

    Article  CAS  Google Scholar 

  65. Ding HY, Chao JB, Zhang GM, Shuang SM, Pan JH (2003) Preparation and spectral investigation on inclusion complex of beta-cyclodextrin with rutin. Spectrochim Acta A 59(14):3421–3429. doi:10.1016/S1386-1425(03)00176-8

    Article  Google Scholar 

  66. Lucas-Abellán C, Mercader-Ros MT, Zafrilla MP, Fortea MI, Gabaldon JA, Nunez-Delicado E (2008) ORAC-fluorescein assay to determine the oxygen radical absorbance capacity of resveratrol complexed in cyclodextrins. J Agric Food Chem 56:2254–2259

    Article  Google Scholar 

  67. Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352

    Article  CAS  Google Scholar 

  68. Isao A, Kikujiro U, Hidondo K (2001) Bull Chem Soc Jpn 74:717

    Article  Google Scholar 

Download references

Acknowledgments

P. Costa and B. Medronho acknowledge grants from the Portuguese Science and Technology Foundation, FCT, (SFRH/BD/63505/2009 and SFRH/BPD/74540/2010, respectively). NMR data was obtained at the Nuclear Magnetic Resonance Laboratory of the Coimbra Chemistry Center (www.nmrccc.uc.pt), Universidade de Coimbra, supported in part by grant REEQ/481/QUI/2006 from FCT, POCI-2010, and FEDER, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Medronho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medronho, B., J. M. Valente, A., Costa, P. et al. Inclusion complexes of rosmarinic acid and cyclodextrins: stoichiometry, association constants, and antioxidant potential. Colloid Polym Sci 292, 885–894 (2014). https://doi.org/10.1007/s00396-013-3124-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-3124-5

Keywords

Navigation