Skip to main content
Log in

Greatly accelerated crystallization of poly(lactic acid): cooperative effect of stereocomplex crystallites and polyethylene glycol

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Stereocomplex crystallite (SC) between enantiomeric poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA), with largely improved thermal resistance and mechanical properties compared with PLLA and PDLA, is a good nucleating agent for poly(lactic acid) (PLA). The effects of SC and/or polyethylene glycol (PEG) on the crystallization behaviors of PLA were investigated. The non-isothermal and isothermal crystallization kinetics revealed that SC and PEG can separately promote the crystallization rate of PLA by heterogeneous nucleation and increasing crystal growth rate, respectively. However, their promoting effect is limited when used alone, and the modified PLA cannot crystallize completely under a cooling rate of 20 °C/min. When SC and PEG are both present, the crystallization rate of PLA is greatly accelerated, and even under a cooling rate of 40 °C/min, PLA can crystallize completely and get a high crystallinity owing to the excellent balance between simultaneously improved nucleation and crystal growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lim L-T, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33(8):820–852

    Article  CAS  Google Scholar 

  2. Gilding D, Reed A (1979) Biodegradable polymers for use in surgery—polyglycolic/poly(actic acid) homo- and copolymers: 1. Polymer 20(12):1459–1464

    Article  CAS  Google Scholar 

  3. Athanasiou KA, Niederauer GG, Agrawal C (1996) Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17(2):93–102

    Article  CAS  Google Scholar 

  4. Trimaille T, Pichot C, Elaissari A, Fessi H, Briancon S, Delair T (2003) Poly(d, l-lactic acid) nanoparticle preparation and colloidal characterization. Colloid Polym Sci 281(12):1184–1190

    Article  CAS  Google Scholar 

  5. Wang C-F, Xie H-Y, Cheng Y-P, Chen L, Hu MZ, Chen S (2011) Chemical synthesis and optical properties of CdS-poly(lactic acid) nanocomposites and their transparent fluorescent films. Colloid Polym Sci 289(4):395–400

    Article  CAS  Google Scholar 

  6. Li HB, Huneault MA (2007) Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 48(23):6855–6866

    Article  CAS  Google Scholar 

  7. Kulinski Z, Piorkowska E (2005) Crystallization, structure and properties of plasticized poly(l-lactide). Polymer 46(23):10290–10300

    Article  CAS  Google Scholar 

  8. Saeidlou S, Huneault MA, Li H, Sammut P, Park CB (2012) Evidence of a dual network/spherulitic crystalline morphology in PLA stereocomplexes. Polymer 53(25):5816–5824

    Article  CAS  Google Scholar 

  9. Barrau S, Vanmansart C, Moreau M, Addad A, Stoclet G, Lefebvre J-M, Seguela R (2011) Crystallization behavior of carbon nanotube–polylactide nanocomposites. Macromolecules 44(16):6496–6502

    Article  CAS  Google Scholar 

  10. Xu Z, Niu Y, Yang L, Xie W, Li H, Gan Z, Wang Z (2010) Morphology, rheology and crystallization behavior of polylactide composites prepared through addition of five-armed star polylactide grafted multiwalled carbon nanotubes. Polymer 51(3):730–737

    Article  CAS  Google Scholar 

  11. Xu Z, Niu Y, Wang Z, Li H, Yang L, Qiu J, Wang H (2011) Enhanced nucleation rate of polylactide in composites assisted by surface acid oxidized carbon nanotubes of different aspect ratios. ACS Appl Mater Interfaces 3(9):3744–3753

    Article  CAS  Google Scholar 

  12. Na B, Zou S, Lv R, Luo M, Pan H, Yin Q (2011) Unusual cold crystallization behavior in physically aged poly(l-lactide). J Phys Chem B 115(37):10844–10848

    Article  CAS  Google Scholar 

  13. Zhong Y, Zhang Y, Yang J, Li W, Wang Z, Xu D, Chen S, Ding Y (2013) Exponentially increased nucleation ability for poly(l-lactide) by adding acid-oxidized multiwalled carbon nanotubes with reduced aspect ratios. Sci China-Chem 56(2):181–194

    Article  CAS  Google Scholar 

  14. Yamane H, Sasai K (2003) Effect of the addition of poly(d-lactic acid) on the thermal property of poly(l-lactic acid). Polymer 44(8):2569–2575

    Article  CAS  Google Scholar 

  15. Tsuji H, Takai H, Saha SK (2006) Isothermal and non-isothermal crystallization behavior of poly(l-lactic acid): effects of stereocomplex as nucleating agent. Polymer 47(11):3826–3837

    Article  CAS  Google Scholar 

  16. Rahman N, Kawai T, Matsuba G, Nishida K, Kanaya T, Watanabe H, Okamoto H, Kato M, Usuki A, Matsuda M, Nakajima K, Honma N (2009) Effect of polylactide stereocomplex on the crystallization behavior of poly(l-lactic acid). Macromolecules 42(13):4739–4745

    Article  CAS  Google Scholar 

  17. Narita J, Katagiri M, Tsuji H (2011) Highly enhanced nucleating effect of melt-recrystallized stereocomplex crystallites on poly(l-lactic acid) crystallization. Macromol Mater Eng 296(10):887–893

    Article  CAS  Google Scholar 

  18. Narita J, Katagiri M, Tsuji H (2013) Highly enhanced accelerating effect of melt-recrystallized stereocomplex crystallites on poly(l-lactic acid) crystallization, 2—effects of poly(d-lactic acid) concentration. Macromol Mater Eng 298(3):270–282

    Article  CAS  Google Scholar 

  19. Sun J, Yu H, Zhuang X, Chen X, Jing X (2011) Crystallization behavior of asymmetric PLLA/PDLA blends. J Phys Chem B 115(12):2864–2869

    Article  CAS  Google Scholar 

  20. Ikada Y, Jamshidi K, Tsuji H, Hyon SH (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20(4):904–906

    Article  CAS  Google Scholar 

  21. Tsuji H, Horii F, Hyon SH, Ikada Y (1991) Stereocomplex formation between enantiomeric poly(lactic acid)s. 2. Stereocomplex formation in concentrated solutions. Macromolecules 24(10):2719–2724

    Article  CAS  Google Scholar 

  22. Tsuji H, Hyon SH, Ikada Y (1991) Stereocomplex formation between enantiomeric poly(lactic acid)s. 3. Calorimetric studies on blend films cast from dilute solution. Macromolecules 24(20):5651–5656

    Article  CAS  Google Scholar 

  23. Tsuji H, Hyon SH, Ikada Y (1992) Stereocomplex formation between enantiomeric poly(lactic acids). 5. Calorimetric and morphological studies on the stereocomplex formed in acetonitrile solution. Macromolecules 25(11):2940–2946

    Article  CAS  Google Scholar 

  24. Tsuji H, Ikada Y (1999) Stereocomplex formation between enantiomeric poly(lactic acid)s. XI. Mechanical properties and morphology of solution-cast films. Polymer 40(24):6699–6708

    Article  CAS  Google Scholar 

  25. Tsuji H, Tezuka Y (2004) Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. Spherulite growth of low-molecular-weight poly(lactic acid)s from the melt. Biomacromolecules 5(4):1181–1186

    Article  CAS  Google Scholar 

  26. Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5(7):569–597

    Article  CAS  Google Scholar 

  27. He Y, Xu Y, Wei J, Fan Z, Li S (2008) Unique crystallization behavior of poly(l-lactide)/poly(d-lactide) stereocomplex depending on initial melt states. Polymer 49(26):5670–5675

    Article  CAS  Google Scholar 

  28. Purnama P, Kim SH (2009) Stereocomplex formation of high-molecular-weight polylactide using supercritical fluid. Macromolecules 43(2):1137–1142

    Article  Google Scholar 

  29. Sun J, Shao J, Huang S, Zhang B, Li G, Wang X, Chen X (2012) Thermostimulated crystallization of polylactide stereocomplex. Mater Lett 89:169–171

    Article  CAS  Google Scholar 

  30. Bao R-Y, Yang W, Jiang W-R, Liu Z-Y, Xie B-H, Yang M-B (2013) Polymorphism of racemic poly(l-lactide)/poly(d-lactide) blend: effect of melt and cold crystallization. J Phys Chem B 117(13):3667–3674

    Article  CAS  Google Scholar 

  31. Bao R-Y, Yang W, Jiang W-R, Liu Z-Y, Xie B-H, Yang M-B, Fu Q (2012) Stereocomplex formation of high-molecular-weight polylactide: a low temperature approach. Polymer 53(24):5449–5454

    Article  CAS  Google Scholar 

  32. Zou S, Na B, Lv R, Pan H (2012) The plasticizer-assisted formation of a percolating multiwalled carbon nanotube network in biodegradable poly(l-lactide). J Appl Polym Sci 123(3):1843–1847

    Article  CAS  Google Scholar 

  33. Yang JM, Chen HL, You JW, Hwang JC (1997) Miscibility and crystallization of poly(l-lactide) poly(ethylene glycol) and poly(l-lactide)/poly(epsilon-caprolactone) blends. Polym J 29(8):657–662

    Article  CAS  Google Scholar 

  34. Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42(14):6209–6219

    Article  CAS  Google Scholar 

  35. Li Y, Wu H, Wang Y, Liu L, Han L, Wu J, Xiang F (2010) Synergistic effects of PEG and MWCNTs on crystallization behavior of PLLA. J Polym Sci B Polym Phys 48(5):520–528

    Article  CAS  Google Scholar 

  36. Zhang Y, Zhang QH, Zha LS, Yang WL, Wang CC, Jiang XG, Fu SK (2004) Preparation, characterization and application of pyrene-loaded methoxy poly(ethylene glycol)–poly(lactic acid) copolymer nanoparticles. Colloid Polym Sci 282(12):1323–1328

    Article  CAS  Google Scholar 

  37. Nakafuku C, Takehisa SY (2004) Glass transition and mechanical properties of PLLA and PDLLA–PGA copolymer blends. J Appl Polym Sci 93(5):2164–2173

    Article  CAS  Google Scholar 

  38. Nakafuku C (1996) Effects of molecular weight on the melting and crystallization of poly(l-lactic acid) in a mixture with poly(ethylene oxide). Polym J 28(7):568–575

    Article  CAS  Google Scholar 

  39. Hu Y, Hu Y, Topolkaraev V, Hiltner A, Baer E (2003) Crystallization and phase separation in blends of high stereoregular poly(lactide) with poly(ethylene glycol). Polymer 44(19):5681–5689

    Article  CAS  Google Scholar 

  40. Jia ZY, Zhang KY, Tan JJ, Han CY, Dong LS, Yang YM (2009) Crystallization behavior and mechanical properties of crosslinked plasticized poly(l-lactic acid). J Appl Polym Sci 111(3):1530–1539

    Google Scholar 

  41. Zhang Y, Xu H, Yang J, Chen S, Ding Y, Wang Z (2013) Significantly accelerated spherulitic growth rates for semicrystalline polymers through the layer-by-layer film method. J Phys Chem C 117(11):5882–5893

    Article  CAS  Google Scholar 

  42. Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C (2004) Thermal analysis of the double-melting behavior of poly(l-lactic acid). J Polym Sci B Polym Phys 42(1):25–32

    Article  CAS  Google Scholar 

  43. Hoogsteen W, Postema A, Pennings A, Ten Brinke G, Zugenmaier P (1990) Crystal structure, conformation and morphology of solution-spun poly(l-lactide) fibers. Macromolecules 23(2):634–642

    Article  CAS  Google Scholar 

  44. Cartier L, Okihara T, Lotz B (1997) Triangular polymer single crystals: stereocomplexes, twins, and frustrated structures. Macromolecules 30(20):6313–6322

    Article  CAS  Google Scholar 

  45. Cebe P, Hong S-D (1986) Crystallization behaviour of poly(ether-ether-ketone). Polymer 27(8):1183–1192

    Article  CAS  Google Scholar 

  46. Zhang Y, Wang Z, Jiang F, Bai J, Wang Z (2013) Effect of miscibility on spherulitic growth rate for double-layer polymer films. Soft Matter 9(24):5771–5778

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Special Funds for Major Basic Research (nos. 2011CB606006 and 2012CB025902), the National Natural Science Foundation of China (nos. 51033003 and 51073109), and the Fundamental Research Funds for the Central Universities (no. 2011SCU04A03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, XF., Bao, RY., Cao, ZQ. et al. Greatly accelerated crystallization of poly(lactic acid): cooperative effect of stereocomplex crystallites and polyethylene glycol. Colloid Polym Sci 292, 163–172 (2014). https://doi.org/10.1007/s00396-013-3067-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-3067-x

Keywords

Navigation