Skip to main content
Log in

Sterically stabilized polypyrrole–palladium nanocomposite particles synthesized by aqueous chemical oxidative dispersion polymerization

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Aqueous chemical oxidative dispersion polymerizations of pyrrole using PdCl2 oxidant were conducted using water-soluble polymeric colloidal stabilizers in order to synthesize polypyrrole–palladium (PPy–Pd) nanocomposite particles in one step. PPy–Pd nanocomposite particles with number average diameters of approximately 30 nm were successfully obtained as colloidally stable aqueous dispersions, which were stable at least for 7 months, using poly(4-lithium styrene sulfonic acid) colloidal stabilizer. The resulting nanocomposite particles were extensively characterized with respect to particle size, size distribution, colloidal stability, nanomorphology, surface/bulk chemical compositions, and conductivity. X-ray photoelectron spectroscopy indicated the existence of poly(styrene sulfonic acid) colloidal stabilizer on the surface of the nanocomposite particles. Transmission electron microscopy studies confirmed that nanometer-sized Pd nanoparticles were distributed in the PPy matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gangopadhyay R, De A (2000) Chem Mater 12:608

    Article  CAS  Google Scholar 

  2. Tian ZQ, Lian YZ, Wang JQ, Wang SJ, Li WHJ (1991) Electroanal Chem 308:357

    Article  CAS  Google Scholar 

  3. Drelinkiewicz A, Hasik M, Kloc M (2000) Catal Lett 64:41

    Article  CAS  Google Scholar 

  4. Kitani A, Akashi T, Sugimoto K, Ito S (2001) Synth Met 121:1301

    Article  CAS  Google Scholar 

  5. Radford PT, Creager SE (2001) Anal Chim Acta 449:199

    Article  CAS  Google Scholar 

  6. Marinakos SM, Novak JP, Brousseau LC III, House AB, Edeki EM, Feldhaus JC, Feldheim DL (1999) J Am Chem Soc 121:8518

    Article  CAS  Google Scholar 

  7. Kang ET, Ting YP, Neoh KG, Tan KL (1993) Polymer 34:4994

    Article  CAS  Google Scholar 

  8. Selvan ST, Spatz JP, Klok H-A, Möller M (1998) Adv Mater 10:132

    Article  CAS  Google Scholar 

  9. Chen A, Kamata K, Nakagawa M, Iyoda T, Wang H, Li X (2005) J Phys Chem B 109:18283

    Article  CAS  Google Scholar 

  10. Chen A, Wang H, Li X (2005) Chem Commun 14:1863

    Article  Google Scholar 

  11. Fujii S, Aichi A, Akamatsu K, Nawafune H, Nakamura Y (2007) J Mater Chem 17:3777

    Article  CAS  Google Scholar 

  12. Freund MS, Henry MC, Hsueh CC, Timko BP (2001) J Electrochem Soc 148:D155

    Article  Google Scholar 

  13. Vasilyeva SV, Vorotyntsev MA, Bezverkhyy I, Lesniewska E, Heintz O, Chassagnon R (2008) J Phys Chem C 112:19878

    Article  CAS  Google Scholar 

  14. Zhao M, Crooks RM (1999) Angew Chem Int Ed 38:364

    Article  CAS  Google Scholar 

  15. Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Acc Chem Res 34:181

    Article  CAS  Google Scholar 

  16. Reetz MT, Westermann E (2000) Angew Chem Int Ed 39:165

    Article  CAS  Google Scholar 

  17. Li Y, El-Sayed MA (2001) J Phys Chem B 105:8938

    Article  CAS  Google Scholar 

  18. Reetz MT, Lohmer G (1996) Chem Commun 16:1921

  19. Reetz MT, Lohmer G, Schwickardi R (1998) Angew Chem Int Ed 37:481

    Article  CAS  Google Scholar 

  20. Klingelhöfer S, Heitz W, Greiner A, Oestreich S, Förster S, Antonietti M (1997) J Am Chem Soc 119:10116

    Article  Google Scholar 

  21. Astruc D (2007) Inorg Chem 46:1884

    Article  CAS  Google Scholar 

  22. Armes SP, Gottesfeld S, Beery JG, Garzon F, Agnew SF (1991) Polymer 32:2325

    Article  CAS  Google Scholar 

  23. Fujii S, Matsuzawa S, Nakamura Y, Ohtaka A, Teratani T, Akamatsu K, Tsuruoka T, Nawafune H (2010) Langmuir 26:6230

    Article  CAS  Google Scholar 

  24. Fujii S, Kodama M, Matsuzawa S, Hamasaki H, Ohtaka A, Nakamura Y (2011) Conducting polymer–metal nanocomposite coating on fibers. In: Hashim A (ed) Advances in nanocomposite technology. InTech, Rijeka, Croatia, p 47

    Google Scholar 

  25. Fujii S, Matsuzawa S, Hamasaki H, Nakamura Y, Bouleghlimat A, Buurma NJ (2012) Langmuir 28:2436

    Article  CAS  Google Scholar 

  26. Münstedt H (1986) Polymer 27:899

    Article  Google Scholar 

  27. Beadle PM, Armes SP, Greaves SJ, Watts JF (1996) Langmuir 12:1784

    Article  CAS  Google Scholar 

  28. Zinovyeva VA, Vorotyntsev MA, Bezverkhyy I, Chaumont D, Hierso JC (2011) Adv Funct Mater 21:1064

    Article  CAS  Google Scholar 

  29. Vetter CA, Suryawanshi A, Lamb JR, Law B, Gelling VJ (2011) Langmuir 27:13719

    Article  CAS  Google Scholar 

  30. Maeda S, Armes SP (1994) J Mater Chem 4:935

    Article  CAS  Google Scholar 

  31. Chastain J (1992) Handbook of XPS. Perkin Elmer, Minneapolis

    Google Scholar 

  32. Neoh KG, Kang ET, Tan KL (1991) J Polym Sci 29:759

    CAS  Google Scholar 

  33. Kim KS, Gossmann AF, Winograd N (1974) Anal Chem 46:197

    Article  CAS  Google Scholar 

  34. Wagner CD, Gale LH, Raymond RH (1979) Anal Chem 51:466

    Article  CAS  Google Scholar 

  35. Kawaguchi M, Sakata Y, Anada S, Kato T, Takahashi A (1994) Langmuir 10:538

    Article  CAS  Google Scholar 

  36. Lascelles SF, Armes SP (1997) J Mater Chem 7(8):1339

    Article  CAS  Google Scholar 

  37. Aksberg R, Einarson M, Berg J, Odberg L (1991) Langmuir 7:43

    Article  CAS  Google Scholar 

  38. Cosgrove T, Obey TM, Vincent B (1986) J Colloid Interface Sci 111:409

    Article  CAS  Google Scholar 

  39. Ohtaka A, Kono Y, Teratani T, Fujii S, Matsuzawa S, Nakamura Y, Nomura R (2011) Catal Lett 141:1097

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Soft-Interface Science” from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. Prof. K. Akamatsu, Dr. T. Tsuruoka, and Prof. H. Nawafune of Konan University are thanked for the TEM studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syuji Fujii.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 3,235 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamasaki, H., Fukui, N., Fujii, S. et al. Sterically stabilized polypyrrole–palladium nanocomposite particles synthesized by aqueous chemical oxidative dispersion polymerization. Colloid Polym Sci 291, 223–230 (2013). https://doi.org/10.1007/s00396-012-2646-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2646-6

Keywords

Navigation