Skip to main content
Log in

Effects of amorphous poly(vinyl acetate) on crystalline morphology of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid)

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The amorphous and crystalline phase behavior, spherulite morphology, and interactions between amorphous poly(vinyl acetate) (PVAc) and poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) were examined using differential scanning calorimetry, polarized-light optical and scanning electron, atomic-force microscopy (DSC, POM, SEM, AFM), and small-angle X-ray scattering (SAXS). The PHBV/PVAc blend was found to be miscible with an almost linear T g-composition relationship, indicating perfect homogeneity. Interaction parameter by melting point depression is a negative value of χ = −0.32, suggesting quite favorable interaction strength. With the intimate interaction between the amorphous PVAc and crystalline PHBV polymers, effects of PVAc on the spherulitic morphology of PHBV are quite significant. Owing to the higher T g of PVAc (than that of PHBV), the spherulite growth rate of PHBV was depressed by increasing PVAc content in blends. Neat PHBV exhibits ring-banded spherulites when crystallized at \( {T_{\rm{c}}} = {6}0\sim {11}0^\circ {\hbox{C}} \); however, with increasing PVAc content in the blends, the temperature range at which the PHBV/PVAc blends exhibit ring-banded spherulites remains similar but the regularity increases, and the inter-ring spacing significantly decreases. In addition, the spherulite size and ring-band patterns therein are strongly dependent on T max (190 vs. 220 °C, respectively, for erasing prior nuclei), from which the blends were quenched to a T c (60–110 °C) for crystallization. For PHBV/PVAc blends crystallized at the same T c from different T max, higher T max tends to erase nuclei, leading to larger spherulites. However, such larger spherulites owing to higher T max are not necessarily packed with thicker lamellae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Holmes PA (1988) In: Bassett DC (ed) Developments in crystalline polymers-2. Elsevier, Amsterdam

    Google Scholar 

  2. Bluhm TL, Hamer GK, Marchessault RH, Fyfe CA, Veregin RP (1986) Macromolecules 19:2871

    Article  CAS  Google Scholar 

  3. Kunioka M, Tamaki A, Doi Y (1989) Macromolecules 22:694

    Article  CAS  Google Scholar 

  4. Scandola M, Ceccorulli G, Pizzoli M, Gazzano M (1992) Macromolecules 25:1405

    Article  CAS  Google Scholar 

  5. Yamada S, Wang Y, Asakawa N, Yoshie N, Inoue Y (2001) Macromolecules 34:4659

    Article  CAS  Google Scholar 

  6. Yoshie N, Saito M, Inoue Y (2001) Macromolecules 34:8953

    Article  CAS  Google Scholar 

  7. Barker PA, Barham PJ, Martinez-Salazar J (1997) Polymer 38:913

    Article  CAS  Google Scholar 

  8. Sawayanagi T, Tanaka T, Iwata T, Abe H, Doi Y, Ito K, Fujisawa T, Fujita M (2007) Macromolecules 40:2392

    Article  CAS  Google Scholar 

  9. Russell TP, Ito H, Wignall GD (1988) Macromolecules 21:1703

    Article  CAS  Google Scholar 

  10. Miao L, Qiu Z, Yang W, Ikehara T (2008) React Funct Polym 68:446

    Article  CAS  Google Scholar 

  11. Chun YS, Kim WN (2000) Polymer 41:2305

    Article  CAS  Google Scholar 

  12. Qiu Z, Ikehara T, Nishi T (2003) Polymer 44:7519

    Article  CAS  Google Scholar 

  13. Ferreira BMP, Zavaglia CAC, Duek EAR (2002) J Appl Polym Sci 86:2898

    Article  CAS  Google Scholar 

  14. Qiu Z, Fujinami S, Komura M, Nakajima K, Ikehara T, Nishi T (2004) Polymer 45:4355

    Article  CAS  Google Scholar 

  15. Tan SM, Ismail J, Kummerlöwe C, Kammer HW (2006) J Appl Polym Sci 101:2776

    Article  CAS  Google Scholar 

  16. Serrano B, Pierola IF, Bravo J, Baselga J (2003) J Master Process Technol 141:123

    Article  CAS  Google Scholar 

  17. Guo Q, Liu Z (2000) J Therm Anal Calorim 59:101

    Article  CAS  Google Scholar 

  18. Gajria AM, Dave V, Gross RA, McCarthy SP (1996) Polymer 37:437

    Article  CAS  Google Scholar 

  19. Kumagai Y, Doi Y (1992) Polym Deg Stab 36:241

    Article  CAS  Google Scholar 

  20. Keller A (1955) J Polym Sci 17:291

    Article  CAS  Google Scholar 

  21. Keller A (1959) J Polym Sci 39:151

    Article  CAS  Google Scholar 

  22. Keith HD, Padden FJ Jr (1996) Macromolecules 29:7776

    Article  CAS  Google Scholar 

  23. Tanaka H, Hayashi T, Nishi T (1986) J Appl Phys 59:3627

    Article  CAS  Google Scholar 

  24. Keith HD, Padden FJ Jr (1984) Polymer 25:28

    Article  CAS  Google Scholar 

  25. Wang ZB, Hu ZJ, Chen YH, Gong YM, Huang HY, He TB (2007) Macromolecules 40:4381

    Article  CAS  Google Scholar 

  26. Frömsdorf A, Woo EM, Lee LT, Chen YF, Förster S (2008) Macromol Rapid Commun 29:1322

    Article  Google Scholar 

  27. Meyer A, Yen KC, Li SH, Förster S, Woo EM (2010) Ind Eng Chem Res. doi:10.1021/ie901356q

    Google Scholar 

  28. Chiu HJ, Chen HL, Lin TL, Lin JS (1999) Macromolecules 32:4969

    Article  CAS  Google Scholar 

  29. Chiu HJ (2005) Polymer 46:3906

    Article  CAS  Google Scholar 

  30. Olabishi O, Robeson LM, Shaw MT (1979) Polymer miscibility. Academic, New York, pp 279

  31. Gordon M, Taylor JS (1952) J Appl Chem 2:493

    Article  CAS  Google Scholar 

  32. Hoffman JD, Weeks JJ (1962) J Res Natl Bur Stand A 66:13

    Google Scholar 

  33. Minakov AA, Mordvintsev DA, Schick C (2004) 45:3755

  34. Papageorgiou GZ, Bikiaris DN (2005) 46:12081

  35. Xie Y, Noda I, Akpalu YA (2008) J Appl Polym Sci 109:2259

    Article  CAS  Google Scholar 

  36. Di Lorenzo ML (2003) Prog Polym Sci 28:663

    Article  Google Scholar 

  37. An YX, Dong LS, Xing PX, Zhuang YG, Mo ZS, Feng ZL (1997) Eur Polym J 33:1449

    Article  CAS  Google Scholar 

  38. Barham PJ, Keller A, Othun EL (1984) Holmes PA. J Mater Sci 19:2781

    Article  CAS  Google Scholar 

  39. Liu J, Qiao X, He S, Cao Q, Wang H (2010) J Appl Polym Sci 115:1616

    Article  CAS  Google Scholar 

  40. Ye HM, Xu J, Guo BH, Iwata T (2009) Macromolecules 42:694

    Article  CAS  Google Scholar 

  41. Strobl G (2007) The physics of polymers: concepts for understanding their structures and behavior, 3rd edn. Springer, New York

    Google Scholar 

  42. Campbell D, White IR (1989) Polymer characterization: physical techniques. New York, Chapman & Hall

  43. Brandrup J, Immergut EH, Grulke EA (1999) Polymer handbook. Wiley Interscience, New York

    Google Scholar 

  44. Bauer H, Owen AJ (1988) Colloid Polym Sci 266:241

    Article  CAS  Google Scholar 

  45. Greco P, Martuscelli Z (1989) Polymer 30:1475

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work has been financially supported by a basic research grant (NSC 96-2221-E-006-099-MY3) for three consecutive years from Taiwan's National Science Council (NSC), to which the authors express their gratitude.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eamor M. Woo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, L., Chou, YH. & Woo, E.M. Effects of amorphous poly(vinyl acetate) on crystalline morphology of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid). Colloid Polym Sci 289, 199–211 (2011). https://doi.org/10.1007/s00396-010-2330-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2330-7

Keywords

Navigation