Skip to main content
Log in

Corrosion protection of iron surface modified by poly(methyl methacrylate) using surface-initiated atom transfer radical polymerization (SI-ATRP)

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A new N-heterocyclic initiator N-[2-(8-heptadecenyl)-4,5-dihydro-1H-imidazole-1-ethyl]-2-bromoisobutyramide was synthesized and immobilized on the surface of iron. Methyl methacrylate was grafted from iron substrates via surface-initiated atom transfer radical polymerization (ATRP). The first-order kinetics of poly(methyl methacrylate) (PMMA) grafting from iron revealed the control of ATRP throughout the reaction, and the polymerization reached a high conversion producing polymers with good control of molecular weights (M n = 68,800) and low polydispersity indexes (M w/M n < 1.32). The thickness of the polymer brush films was greater than 47 nm after 7 h of reaction time. The grafting density was estimated to be 0.48 chains nm−2. The iron surfaces at various stages of modification were characterized by scanning electron microscopy and energy dispersive spectrometer. The analytical results were consistent with a thin compact polymer coating on the surface of iron. Iron surface with grafted PMMA coating showed significant corrosion resistance. This work demonstrated that the surface-initiated ATRP is a versatile means of the surface modification of active metals with well-defined and functionalized polymer brushes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jeyaprabha C, Sathiyanarayanan S, Phani K, Venkatachari G (2005) Investigation of the inhibitive effect of poly(diphenylamine) on corrosion of iron in 0.5 M H2SO4 solutions. J Electroanal Chem 585:250–255

    Article  CAS  Google Scholar 

  2. Amar H, Benzakour J, Derja A, Villemin D, Moreau B (2003) A corrosion inhibition study of iron by phosphonic acids in sodium chloride solution. J Electroanal Chem 558:131–139

    Article  CAS  Google Scholar 

  3. Surme A, Gurten AA (2009) Role of polyethylene glycol tert-octylphenyl ether on corrosion behaviour of mild steel in acidic solution. Corros Eng Sci Technol 44:304–311

    Article  CAS  Google Scholar 

  4. Delatorre GC, Mendoza RN, Espinosamedina MA, Martinezvillafane A, Gonzalezrodriguez JG, Castano VM (2002) Corrosion protection of 1008 carbon steel by hybrid coatings. Br Corros J 37:293–297

    Article  Google Scholar 

  5. Gong R, Maclaughlin S, Zhu SP (2008) Surface modification of active metals through atom transfer radical polymerization grafting of acrylics. Appl Surf Sci 254:6802–6809

    Article  CAS  Google Scholar 

  6. Huh JH, Oh EJ, Cho JH (2003) Investigation of corrosion protection of iron by polyaniline blend coatings. Synth Met 137:965–966

    Article  CAS  Google Scholar 

  7. Messaddeq SH, Pulcineli SH, Santilli CV, Guastaldi AV, Messaddeq Y (1999) Microstructure and corrosion resistance of inorganic–organic (ZrO2-PMMA) hybrid coating on stainless steel. J Non-Cryst Solids 247:164–170

    Article  CAS  Google Scholar 

  8. Fadeev AY, McCarthy TJ (1999) A new route to covalently attached monolayers: reaction of hydridosilanes with titanium and other metal surfaces. J Am Chem Soc 121:12184–12185

    Article  CAS  Google Scholar 

  9. Viornery C, Guenther HL, Aronsson BO, Pechy P, Descouts P, Graetzel M (2002) Osteoblast culture on polished titanium disks modified with phosphonic acids. J Biomed Mater Res 62:149–155

    Article  CAS  Google Scholar 

  10. Barber TA, Golledge SL, Castner DG, Healy KE (2003) Peptide-modified p(AAm-co-EG/AAc) IPNs grafted to bulk titanium modulate osteoblast behavior in vitro. J Biomed Mater Res 64A:38–47

    Article  CAS  Google Scholar 

  11. Griep RN, Karger M, Menzel H (2004) Using benzophenone-functionalized phosphonic acid to attach thin polymer films to titanium surfaces. Langmuir 20:11811–11814

    Article  Google Scholar 

  12. Zhao B, Brittain WJ (2000) Polymer brushes: surface-immobilized macromolecules. Prog Polym Sci 25:677–710

    Article  CAS  Google Scholar 

  13. Ryu DY, Shin K, Drockenmuller E, Hawker CJ, Russell TP (2005) A generalized approach to the modification of solid surfaces. Science 308:236–239

    Article  CAS  Google Scholar 

  14. Milner ST (1991) Polymer brushes. Science 251:905–914

    Article  CAS  Google Scholar 

  15. Edmondson S, Osborne VL, Huck WTS (2004) Polymer brushes via surface-initiated polymerizations. Chem Soc Rev 33:14–22

    Article  CAS  Google Scholar 

  16. Burkett SL, Ko N, Stern ND, Caissie JA, Sengupta D (2006) Covalently linked nanocomposites: poly(methyl methacrylate) brushes grafted from zirconium phosphonate. Chem Mater 18:5137–5143

    Article  CAS  Google Scholar 

  17. Fan X, Lin L, Messersmith PB (2006) Cell fouling resistance of polymer brushes grafted from Ti substrates by surface-initiated polymerization: effect of ethylene glycol side chain length. Biomacromolecules 7:2443–2448

    Article  CAS  Google Scholar 

  18. Hester JF, Banerjee P, Won YY, Akthakul A, Acar MH, Mayes AM (2002) ATRP of amphiphilic graft copolymers based on PVDF and their use as membrane additives. Macromolecules 35:7652–7661

    Article  CAS  Google Scholar 

  19. Huang W, Kim J, Bruening ML, Baker GL (2002) Functionalization of surfaces by water-accelerated atom-transfer radical polymerization of hydroxyethyl methacrylate and subsequent derivatization. Macromolecules 35:1175–1179

    Article  CAS  Google Scholar 

  20. Jain P, Dai J, Grajales S, Saha S, Baker GL, Bruening ML (2007) Completely aqueous procedure for the growth of polymer brushes on polymeric substrates. Langmuir 23:11360–11365

    Article  CAS  Google Scholar 

  21. Matyjaszewski K, Miller PJ, Shukla N, Immaraporn B, Gelman A, Luokala BB, Siclovan TM, Kickelbick G, Vallant T, Hoffmann H, Pakula T (1999) Polymers at interfaces: using atom transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator. Macromolecules 32:8716–8724

    Article  CAS  Google Scholar 

  22. Xiao DQ, Wirth MJ (2002) Kinetics of surface-initiated atom transfer radical polymerization of acrylamide on silica. Macromolecules 35:2919–2925

    Article  CAS  Google Scholar 

  23. Kim J, Bruening ML, Baker GL (2000) Surface-initiated atom transfer radical polymerization on gold at ambient temperature. J Am Chem Soc 122:7616–7617

    Article  CAS  Google Scholar 

  24. Kim JB, Huang WX, Miller MD, Baker GL, Bruening ML (2003) Kinetics of surface-initiated atom transfer radical polymerization. J Polym Sci Polym Chem 41:386–394

    Article  CAS  Google Scholar 

  25. Huang X, Wirth MJ (1997) Surface-initiated radical polymerization on porous silica. Anal Chem 69:4577–4580

    Article  CAS  Google Scholar 

  26. Huang X, Doneski LJ, Wirth MJ (1998) Surface-confined living radical polymerization for coatings in capillary electrophoresis. Anal Chem 70:4023–4029

    Article  CAS  Google Scholar 

  27. Prucker O, Rühe J (1998) Polymer layers through self-assembled monolayers of initiators. J Am Chem Soc 14:6893–6898

    CAS  Google Scholar 

  28. Claes M, Voccia S, Detrembleur C, Jerome C, Gilbert B, Leclere P, Geskin VM, Gouttebaron R, Hecq M, Lazzaroni R, Jerome R (2003) Polymer coating of steel by a combination of electrografting and atom transfer radical polymerization. Macromolecules 36:5926–5933

    Article  CAS  Google Scholar 

  29. Chen RX, Zhu SP, Maclaughlin S (2008) Grafting acrylic polymers from flat nickel and copper surfaces by surface-initiated atom transfer radical polymerization. Langmuir 24:6889–6896

    Article  CAS  Google Scholar 

  30. Fan X, Lin L, Dalsin JL, Messersmith PB (2005) Biomimetic anchor for surface-initiated polymerization from metal substrates. J Am Chem Soc 127:15843–15847

    Article  CAS  Google Scholar 

  31. Zhu AH, Wang Z, Xie MR, Zhang YQ (2007) Synthesis of imidazole end-capped poly(n-butyl methacrylate)s via atom transfer radical polymerization with a new functional initiator containing imidazolium group. E-Polymers no. 009

  32. He XY, Yang W, Pei XW (2008) Preparation, characterization, and tunable wettability of poly(ionic liquid) brushes via surface-initiated atom transfer radical polymerization. Macromolecules 41:4615–4621

    Article  CAS  Google Scholar 

  33. Szyprowski AJ (2000) Relationship between chemical structure of imidazoline inhibitors and their effectiveness against hydrogen sulphide corrosion of steels. Br Corros J 35:155–160

    Article  CAS  Google Scholar 

  34. Bistline RG, Hampson JW, Linfield WM (1983) Synthesis and properties of fatty imidazolines and their N-(2-aminoethyl) derivatives. J Am Oil Chem Soc 60:823–828

    Article  CAS  Google Scholar 

  35. Husseman M, Malmstrom EE, McNamara M, Mate M, Mecerreyes D, Benoit DG, Hedrick JL, Mansky P, Huang E, Russell TP, Hawker CJ (1999) Controlled synthesis of polymer brushes by “living” free radical polymerization techniques. Macromolecules 32:1424–1431

    Article  CAS  Google Scholar 

  36. Chung TC, Dong JY (2002) Synthesis of linear ethylene/divinylbenzene copolymers by metallocene catalysis. Macromolecules 35:2868–2870

    Article  CAS  Google Scholar 

  37. Ejaz M, Yamamoto S, Ohno K, Tsujii Y, Fukuda T (1998) Controlled graft polymerization of methyl methacrylate on silicon substrate by the combined use of the Langmuir–Blodgett and atom transfer radical polymerization techniques. Macromolecules 31:5934–5936

    Article  CAS  Google Scholar 

  38. Zamborini FP, Crooks RM (1998) Corrosion passivation of gold by n-alkanethiol self-assembled monolayers: effect of chain length and end group. Langmuir 14:3279–3286

    Article  CAS  Google Scholar 

  39. Singh SK, Tambe SP, Gunasekaran G, Raja VS, Kumar D (2009) Electrochemical impedance study of thermally sprayable polyethylene coatings. Corros Sci 51:595–601

    Article  CAS  Google Scholar 

  40. Rodriguze MT, Grecenea JJ, Saura JJ, Suay JJ (2004) The influence of the critical pigment volume concentration (CPVC) on the properties of epoxy coating: part—II. Anticorrosion and economic properties. Prog Org Coat 50:68–74

    Article  Google Scholar 

  41. Cano E, Lafuentem D, Bastidas DM (2010) Use of EIS for the evaluation of the protective properties of coatings for metallic cultural heritage: a review. J Solid State Electrochem 14:381–391

    Article  CAS  Google Scholar 

  42. Ma H, Chen S, Niu L, Zhao S, Li S, Li D (2002) Inhibition of copper corrosion by several Schiff bases in aerated halide solutions. J Appl Electrochem 32:65–72

    Article  CAS  Google Scholar 

  43. Nahir TM, Bowden EF (1994) Impedance spectroscopy of electroinactive thiolate films adsorbed on gold. Electrochim Acta 39:2347–2352

    Article  CAS  Google Scholar 

  44. Sun L, Crook RM (1993) Indirect visualization of defect structures contained within self-assembled organomercaptan monolayers: combined use of electrochemistry and scanning tunneling microscopy. Langmuir 9:1951–1954

    Article  CAS  Google Scholar 

  45. Chailapakul O, Sun L, Xu C, Crooks RM (1993) Interactions between organized, surface-confined monolayers and vapor-phase probe molecules. 7. Comparison of self-assembling n-alkanethiol monolayers deposited on gold from liquid and vapor phases. J Am Chem Soc 115:12459–12467

    Article  CAS  Google Scholar 

  46. Zhao XM, Wilbur JL, Whitesides GM (1996) Using two-stage chemical amplification to determine the density of defects in self-assembled monolayers of alkanethiolates on gold. Langmuir 12:3257–3264

    Article  CAS  Google Scholar 

  47. Barcia OE, Matoos OR (1990) Reaction model simulating the role of sulphate and chloride in anodic dissolution of iron. Electrochim Acta 35:1601–1608

    Article  CAS  Google Scholar 

  48. Rosa RLD, Earl DA, Bierwagen GP (2002) Statistical evaluation of EIS and ENM data collected for monitoring corrosion barrier properties of organic coatings on Al-2024-T3. Corros Sci 44:1607–1620

    Article  Google Scholar 

  49. Ma HY, Yang C, Chen SH, Jiao YL, Huang SX, Li DG, Luo JL (2003) Electrochemical investigation of dynamic interfacial processes at 1-octadecanethiol-modified copper electrodes in halide-containing solutions. Electrochim Acta 48:4277–4289

    Article  CAS  Google Scholar 

  50. Feng Y, Teo WK, Siow KS, Gao Z, Tan KL, Hsieh AK (1997) Corrosion protection of copper by a self-assembled monolayer of alkanethiol. J Electrochem Soc 144:55–64

    Article  CAS  Google Scholar 

  51. Benabdellah M, Ousslim A, Hammouti B, Elidrissi A, Aouniti A, Dafali A, Bekkouch K, Benkaddour M (2007) The effect of poly(vinyl caprolactone-co-vinyl pyridine) and poly(vinyl imidazol-co-vinyl pyridine) on the corrosion of steel in H3PO4 media. J Appl Electrochem 37:819–826

    Article  CAS  Google Scholar 

  52. Atkins PW (1990) Physical chemistry, 4th edn. Freeman, New York

    Google Scholar 

  53. Murray JN (1997) Electrochemical test methods for evaluating organic coatings on metals: an update. Part II: single test parameter measurements. Prog Org Coat 31:255–264

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the support of this work by the Analysis Centre of China Pharmaceutical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, G., Li, YM., Lu, CH. et al. Corrosion protection of iron surface modified by poly(methyl methacrylate) using surface-initiated atom transfer radical polymerization (SI-ATRP). Colloid Polym Sci 288, 1445–1455 (2010). https://doi.org/10.1007/s00396-010-2283-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2283-x

Keywords

Navigation