Skip to main content
Log in

Dynamics in water-AOT-n-decane microemulsions with poly(ethylene glycol) probed by dielectric spectroscopy

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Water in oil microemulsions, consisting of water, AOT and n-decane, have been used as a model system to investigate the influence of the water soluble polymer PEO on the dynamical behavior of the system. Therefore dielectric relaxation spectroscopy and conductivity, extracted from dielectric spectroscopy, measurements in a wide frequency and temperature range have been applied. The pure microemulsion displays the known phenomenon of percolation that manifests in a steep increase of conductivity at the percolation temperature \(T_\text{P}\). The percolation temperature has been found to be strongly dependent on droplet volume fraction and droplet size. The latter additionally shows that percolation temperature and surfactant film rigidity are proportional. Far from percolation water-AOT-n-decane microemulsions display two dielectric relaxations. The slower one has a relaxation time of \(\tau \approx 3\cdot 10^{-6}~\text{s}\) and can be related to an interfacial polarization at the interface of the water core and the AOT shell (core relaxation). The faster one has a relaxation time of \(\tau \approx 10^{-9}~\text{s}\) and can be related to the ions in the AOT shell(shell or cluster relaxation). While the first is mainly untouched by the percolation phenomenon, the latter undergoes a slowdown and an increase of relaxation strength, both over about two decades, on approaching the percolation transition. Addition of PEO tremendously shifts the percolation transition to higher temperatures, due to adsorption at the AOT layer which leads to an increase in rigidity. Furthermore a lower phase boundary temperature evolves, below which the microemulsion phase separates. The conductivity of the microemulsion is also slightly increased with polymer. The effect on the dielectric properties is only small, where dielectric relaxation times are reduced by the polymer, while only the relaxation strength of the faster relaxation is influenced and also decreases with polymer. The decreased relaxation time of core relaxation can be either due to changes in the core to shell volume ratio or an increased conductivity of the water core. The decrease in relaxation time and strength of the shell relaxation suggest that the ion mobility in the shell increase, while the dipole moment is reduced. Additionally we applied a cluster relaxation model proposed by Cametti et al. (Phys Rev Lett 75(3):569, 1995) and Bordi et al. (J Phys, Condens Matter 8:A19, 1996) to estimate the cluster size evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Cametti C, Sciortino F, Tartaglia P, Rouch J, Chen SH (1995) Phys Rev Lett 75(3):569

    Article  CAS  Google Scholar 

  2. Bordi F, Cametti C, Rouch J, Sciortino F, Tartaglia P (1996) J Phys, Condens Matter 8:A19

    Article  Google Scholar 

  3. Blochowicz T, Gogelein C, Spehr T, Muller M, Stuhn B (2007) Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 76(4):041505

    CAS  Google Scholar 

  4. Müller M, Stühn B, Busse K, Kressler J (2009) J Colloid Interface Sci 335(2):228

    Article  Google Scholar 

  5. Bordi F, Cametti C, Di Biasio A (2000) Progress in Colloid and Interface Science 100:44

    Google Scholar 

  6. D’Angelo M, Fioretto D, Onori G, Santucci A (1996) J Mol Struct 383:157

    Article  Google Scholar 

  7. D’Angelo M, Fioretto D, Onori G, Palmieri L, Santucci A (1995) Phys Rev E 52(5):R4620

    Article  Google Scholar 

  8. D’Angelo M, Fioretto D, Onori G, Palmieri L, Santucci A (1996) Phys Rev E 54(1):993

    Article  Google Scholar 

  9. D’Angelo M, Fioretto D, Onori G, Santucci A (1998) Phys Rev E 58(6):7657

    Article  Google Scholar 

  10. Cametti C, Codastefano P, Di Biasio A, Tartaglia P, Chen SH (1989) Phys Rev A 40(4):1962

    Article  CAS  Google Scholar 

  11. Bordi F, Cametti C (2001) J Colloid Interface Sci 237(2):224

    Article  CAS  Google Scholar 

  12. Camardo M, D’Angelo M, Fioretto D, Onori G, Palmieri L, Santucci A (1996) Progress in Colloid and Interface Science 100:177

    Article  CAS  Google Scholar 

  13. Feldman Y, Puzenko A, Ryabov Y (2002) Chem Phys 284(1–2):139

    Article  CAS  Google Scholar 

  14. Feldman Y, Kozlovich N, Alexandrov Y, Nigmatullin R, Ryabov Y (1996) Phys Rev E 54(5):5420

    Article  CAS  Google Scholar 

  15. Bordi F, Cametti C, Di Biasio A, Onori G (1998) Progress in Colloid and Interface Science 110:208

    CAS  Google Scholar 

  16. Cametti C, Codastefano P, Tartaglia P, Chen SH, Rouch J (1992) Phys Rev A 45(8):R5358

    Article  Google Scholar 

  17. Cametti C, Codastefano P, Tartaglia P, Rouch J, Chen SH (1990) Phys Rev Lett 64(12):1461

    Article  CAS  Google Scholar 

  18. Kataoka H, Eguchi T, Masui H, Miyakubo K, Nakayama H, Nakamura N (2003) J Phys Chem B 107(45):12542

    Article  CAS  Google Scholar 

  19. Farago B, Huang J, Richter D, Safran SA, Milner ST (1990) Progress in Colloid and Interface Science 81:60

    CAS  Google Scholar 

  20. Kitchens CL, Bossev DP, Roberts CB (2006) J Phys Chem B 110(41):20392

    Article  CAS  Google Scholar 

  21. Spehr T, Frick B, Grillo I, Falus P, Muller M, Stühn B (2009) Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 79(3):031404

    Google Scholar 

  22. Stubenrauch C (2009) Microemulsions: background, new Concepts, applications, perspectives. Wiley, New York

    Google Scholar 

  23. Eicke HF, Borkovec M, Das-Gupta B (1989) J Phys Chem 93(1):314

    Article  CAS  Google Scholar 

  24. Kallay N, Chittofrati A (1990) J Phys Chem 94(11):4755

    Article  CAS  Google Scholar 

  25. Hall DG (1990) J Phys Chem 94(1):429

    Article  CAS  Google Scholar 

  26. Halle B (1990) Surfactants and macromolecules: self-assembly at interfaces and in bulk, pp 211–217

  27. Halle B, Bjorling M (1995) The Journal of Chemical Physics 103(4):1655

    Article  CAS  Google Scholar 

  28. Grest GS, Webman I, Safran SA, Bug ALR (1986) Phys Rev A 33(4):2842

    Article  CAS  Google Scholar 

  29. Bug ALR, Safran SA, Grest GS, Webman I (1985) Phys Rev Lett 55(18):1896

    Article  CAS  Google Scholar 

  30. Safran SA, Webman I, Grest GS (1985) Phys Rev A 32(1):506

    Article  CAS  Google Scholar 

  31. Laguës M, Ober R, Taupin C (1978) Journal de Physique Lettres 39(24):L487

    Article  Google Scholar 

  32. Laguës M (1979) Journal de Physique Lettres 40(14):L331

    Article  Google Scholar 

  33. Laguës M (1979) Comptes Rendus Hebdomadaires des Seances de L Academie des Sciences Serie B 288(20):339

    Google Scholar 

  34. Laguës M, Sauterey C (1980) J Phys Chem 84(26):3503

    Article  Google Scholar 

  35. Chen SH, Rouch J, Sciortino F, Tartaglia P (1994) Journal of Physics: Condensed Matter 6(50):10855

    Article  CAS  Google Scholar 

  36. Hanai T (1968) Emulsion science academic press London and New York, chap. Electrical Properties of Emulsions, p. 353

  37. Kremer F, Schönhals A (2003) Broadband dielectric spectroscopy, Springer-Verlag, Berlin

    Google Scholar 

  38. Fioretto D, Freda M, Onori G, Santucci A (1999) J Phys Chem B 103(39):8216

    Article  CAS  Google Scholar 

  39. Freda M, Onori G, Paciaroni A, Santucci A (2002) J Mol Liq 101(1–3):55

    Article  CAS  Google Scholar 

  40. Schübel D, Bedford O, Ilgenfritz G, Eastoe J, Heenan R (1999) Phys Chem Chem Phys 1(10):2521

    Article  Google Scholar 

  41. Meier W (1997) J Phys Chem B 101(6):919

    Article  CAS  Google Scholar 

  42. Meier W (1996) Langmuir 12(5):1188

    Article  CAS  Google Scholar 

  43. Schübel D, Ilgenfritz G (1997) Langmuir 13(16):4246

    Article  Google Scholar 

  44. van Dijk MA, Joosten JGH, Levine YK, Bedeaux D (1989) J Phys Chem 93(6):2506

    Article  Google Scholar 

  45. Spehr T, Frick B, Grillo I, Stühn B (2008) J Phys Condens Matter 20(10):104204 (6pp)

    Article  Google Scholar 

  46. Wagner H, Richert R (1999) J Phys Chem B 103(20):4071

    Article  CAS  Google Scholar 

  47. Di Biasio A, Cametti C, Codastefano P, Tartaglia P, Rouch J, Chen SH (1993) Phys Rev E 47(6):4258

    Article  Google Scholar 

  48. De Gennes PG, Taupin C (1982) J Phys Chem 86(13):2294

    Article  Google Scholar 

  49. Andelman D, Cates ME, Roux D, Safran SA (1987) J Chem Phys 87(12), 7229

    Article  CAS  Google Scholar 

  50. Safran SA (2003) Statistical thermodynamic of surfaces, interfaces, and membranes. Frontiers in Physics, vol 90. Westview Press, San Francisco

  51. van der Linden E, Geiger S, Bedeaux D (1989) Phys Stat Mech Appl 156(1):130

    Article  Google Scholar 

  52. Binks BP, Meunier J, Abillon O, Langevin D (1989) Langmuir 5(2):415

    Article  CAS  Google Scholar 

  53. Nagao M, Seto H, Takeda T, Kawabata Y (2001) J Chem Phys 115(21):10036

    Article  CAS  Google Scholar 

  54. Huang JS, Milner ST, Farago B, Richter D (1987) Phys Rev Lett 59(22):2600

    Article  CAS  Google Scholar 

  55. Farago B, Richter D, Huang JS, Safran SA, Milner ST (1990) Phys Rev Lett 65(26):3348

    Article  CAS  Google Scholar 

  56. Kawabata Y, Seto H, Nagao M, Takeda T (2002) J Neutron Res 10(3):131

    Article  CAS  Google Scholar 

  57. Mehta SK, Kawaljit (2002) Phys Rev E 65(2):021502

    Article  CAS  Google Scholar 

  58. Mehta S, Sharma S (2006) J Colloid Interface Sci 296(2):690

    Article  CAS  Google Scholar 

  59. Mark JE, Flory PJ (1965) J Am Chem Soc 87(7):1415

    Article  CAS  Google Scholar 

  60. Kawaguchi S, Imai G, Suzuki J, Miyahara A, Kitano T, Ito K (1997) Polymer 38(12):2885

    Article  CAS  Google Scholar 

  61. Hammouda B, Ho DL (2007) J Polymer Sci B Polymer Phys 45(16):2196

    Article  CAS  Google Scholar 

  62. De Gennes PG (1990) J Phys Chem 94(22):8407 (1990)

    Article  Google Scholar 

  63. Barentin C, Muller P, Joanny JF (1998) Macromolecules 31(7):2198

    Article  CAS  Google Scholar 

  64. Gefen Y, Aharony A, Alexander S (1983) Phys Rev Lett 50(1):77

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Wipf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wipf, R., Jaksch, S. & Stühn, B. Dynamics in water-AOT-n-decane microemulsions with poly(ethylene glycol) probed by dielectric spectroscopy. Colloid Polym Sci 288, 589–601 (2010). https://doi.org/10.1007/s00396-010-2199-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2199-5

Keywords

Navigation