Skip to main content
Log in

Polyampholyte-modified ionic microemulsions

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

This paper is focused on the influence of added polyampholyte, namely poly(N,N′-diallyl-N,N′-dimethyl-alt-maleamic carboxylate) on the inverse micellar phase range of the pseudo-ternary system consisting of toluene–pentanol (1:1)/SDS/water in dependence on the pH value and the temperature. Investigations on phase behavior have revealed that a greater extension in direction to the water-rich corner can be found at pH 4 compared to pH 9. In order to understand changes in the microstructure, polymer–surfactant interactions in dependence on pH have been examined by means of diffusion-ordered spectroscopy, differential scanning calorimetry, as well as conductivity measurements. The results have proven that the present microemulsion consists of water-in-oil droplets, with the polyampholyte located more in the inner core of the water droplets at pH 9 rather than at the interphase of the surfactant film at pH 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

References

  1. De Genne PG, Taupin C (1982) J Phys Chem 86:2294

    Article  Google Scholar 

  2. Friberg SE, Bothanel P (1987) Microemulsions: Structure and dynamics. CRC Press, Boca Raton

    Google Scholar 

  3. Langevin D (1992) Ann Rev Phys Chem 43:341

    Article  CAS  Google Scholar 

  4. Shah DH (1998) Micelles, microemulsions and monolayers, science and technology. Marcel Dekker, New York

    Google Scholar 

  5. Nagarajan R (2000) Langmuir 16:6400

    Article  CAS  Google Scholar 

  6. Pal A, Shah S, Devi S (2007) Colloids Surf A Phys Eng Aspects 302:483

    Article  CAS  Google Scholar 

  7. Chapek I (2004) Adv Coll Int Sci 110:49

    Article  CAS  Google Scholar 

  8. Note C, Koetz J, Wattebled L, Laschewsky L (2007) J Colloid Interface Sci 308:162

    Article  CAS  Google Scholar 

  9. Pileni MP (1993) J Phys Chem 97:6961

    Article  CAS  Google Scholar 

  10. Koetz J, Bahnemann J, Kosmella S (2007) Colloid Polym Sci 285:1719

    Article  CAS  Google Scholar 

  11. Chen Z, Jiao Z, Li Z (2008) J Appl Polym Sci 110:1664

    Article  CAS  Google Scholar 

  12. Baier J, Koetz J, Kosmella S, Tiersch B, Rehage H (2007) J Phys Chem B 111:8612

    Article  CAS  Google Scholar 

  13. Koetz J, Andres S, Kosmella S, Tiersch B (2006) Compos Interfaces 13:461

    Article  CAS  Google Scholar 

  14. Note C, Ruffin J, Tiersch B, Koetz J (2007) J Dispers Sci Technol 28:155

    Article  CAS  Google Scholar 

  15. Eastoe J, Warne B (1996) Curr Op Colloid Sci 1:800

    Article  CAS  Google Scholar 

  16. Mayer ABR, Mark JE (1997) Colloid Polym Sci 275:333

    Article  CAS  Google Scholar 

  17. Della Pina C, Faletta E, Rossi LP (2008) Chem Soc Rev 37:2077

    Article  CAS  Google Scholar 

  18. Holmes JD, Bhargava PA, Korgel BA, Johnston KP (1999) Langmuir 15:6613

    Article  CAS  Google Scholar 

  19. Brus L (1991) Appl Phys A 53:465

    Article  Google Scholar 

  20. Tognini P, Andeani LC, Geddo M, Stella A, Cheyssac P, Kotman R, Migliori A (1996) Phys Rev B 55:6692

    Google Scholar 

  21. Herrig H, Hempelmann R (1996) Material Lett 27:287

    Article  CAS  Google Scholar 

  22. Robert J, Pugh LB, Berstrom L (1993) Surface and colloid chemistry in advanced ceramics, surfactant science series. Marcel Dekker, New York

    Google Scholar 

  23. Ford MJ, Masens C, Cortie MB (2006) Surface Rev Lett 13:297

    Article  CAS  Google Scholar 

  24. Souto EB, Weller RHM (2008) Int J Cosmet Sci 30:157

    Article  CAS  Google Scholar 

  25. Emerich DF, Thanos CG (2007) J Drug Target 15:163

    Article  CAS  Google Scholar 

  26. Wong EJ, Gaharwar AK, Müller-Schulte D, Bahadur D, Richtering W (2008) J Nanosci Nanotechnol 8:4033

    Article  CAS  Google Scholar 

  27. Katz E, Willner I (2004) Angew Chem Int Ed 43:6042

    Article  CAS  Google Scholar 

  28. Medinitz IL, Uyeda HT, Goldmann ER, Mattoussi H (2005) Nature Mater 4:435

    Article  CAS  Google Scholar 

  29. Koetz J, Kosmella S (2007) Polyelectrolytes and nanoparticles. Springer, Berlin Heidelberg, pp 52–56

    Google Scholar 

  30. Hamley I (2003) Angew Chem Int Ed 42:1692

    Article  CAS  Google Scholar 

  31. Bagger-Jörgensen H, Olsson U, Iliopoulos I, Mortensen I (1997) Langmuir 13:5820

    Article  Google Scholar 

  32. Suarez MJ, Levy H, Lang J (1993) J Phys Chem 97:9808

    Article  CAS  Google Scholar 

  33. Lianos P, Modes S, Staikos G, Brown W (1992) Langmuir 8:1054

    Article  CAS  Google Scholar 

  34. Papoutsi D, Lianos P, Brown W (1994) Langmuir 10:3402

    Article  CAS  Google Scholar 

  35. Gonzalez-Blanco C, Rodriguez LJ, Velazquez MM (1997) Langmuir 13:1938

    Article  CAS  Google Scholar 

  36. Kabalnov A, Olsson U, Thuresson K, Wennerström H (1994) Langmuir 10:4509

    Article  CAS  Google Scholar 

  37. Suarez MJ, Lang J (1995) J Phys Chem 99:4626

    Article  CAS  Google Scholar 

  38. Meier W (1996) Langmuir 12:1188

    Article  CAS  Google Scholar 

  39. Appel J, Ligoure CH, Porte G (2004) J Stat Mech: Theor Exp P08002:1

    Google Scholar 

  40. Shioi A, Hirada M, Obika M, Adachi M (1998) Langmuir 14:4737

    Article  CAS  Google Scholar 

  41. Tam KC, Wyn-Jones E (2006) Chem Soc Rev 35:693

    Article  CAS  Google Scholar 

  42. Wang C, Tam KC (2002) Langmuir 18:6484

    Article  CAS  Google Scholar 

  43. Wang C, Tam KC (2005) J Phys Chem B 109:5156

    Article  CAS  Google Scholar 

  44. Lapitsky Y, Parikh M, Kaler EW (2007) J Phys Chem B 111:8379

    Article  CAS  Google Scholar 

  45. Panmai S, Prud’homme RK, Pfeiffer G, Jockusch S, Turro NJ (2002) Langmuir 18:3860

    Article  CAS  Google Scholar 

  46. Hahn M, Jaeger W, Schmolke R, Behnisch J (1990) Acta Polymerica 41:107

    Article  CAS  Google Scholar 

  47. Thünemann AF, Sander K, Jaeger W (2002) Langmuir 18:5099

    Article  CAS  Google Scholar 

  48. Flory PJ, Fox TG (1951) J Am Chem Soc 73:1904

    Article  CAS  Google Scholar 

  49. Beitz T, Kötz J, Friberg S (1998) Progr Colloid Polym Sci 111:100

    Article  CAS  Google Scholar 

  50. Wu D, Chen A, Johnson C (1995) J Magn Reson Series A 115:260

    Article  CAS  Google Scholar 

  51. Morris KF, Johnson CS Jr (1992) J Am Chem Soc 114:3139

    Article  CAS  Google Scholar 

  52. Morris KF, Johnson CS Jr (1993) J Am Chem Soc 115:4291

    Article  CAS  Google Scholar 

  53. Johnson CS Jr (1999) Prog NMR Spectrosc 34:203

    Article  CAS  Google Scholar 

  54. Koetz J, Günther C, Kosmella S, Kleinpeter E, Wolf G (2003) Prog Colloid Polym Sci 122:27

    Article  CAS  Google Scholar 

  55. Wolf G, Kleinpeter E (2005) Langmuir 21:6742

    Article  CAS  Google Scholar 

  56. Olsson U, Shinoda K, Lindman B (1986) J Phys Chem 90:4083

    Article  CAS  Google Scholar 

  57. Olsson U, Ström P, Söderman O, Wennerström H (1989) J Phys Chem 93:4572

    Article  CAS  Google Scholar 

  58. Palazzo G, Carbone L, Colafemmina G, Angelico R, Celglie A, Giustini M (2004) Phys Chem Chem Phys 6:1423

    Article  CAS  Google Scholar 

  59. Senatra D, Gabrielli G, Zhou G, Zhou Z (1988) IEEE Trans Electr Insul 23:579

    Article  CAS  Google Scholar 

  60. Ezrahi S, Aserin A, Fanun M, Garti N (2001) Subzero temperature behaviour of water in microemulsions. In: Garti N (ed) Thermal behaviour of dispersed systems. Marcel Dekker, New York, pp 59–120

    Google Scholar 

  61. Vyalikh A, Emmler TH, Grünberg B, Xu Y, Schenderovich I, Findenegg GH, Limbach HH, Buntkowsky G (2007) Z Phys Chem 221:155

    CAS  Google Scholar 

  62. Robertson D, Hellweg T, Tiersch B, Koetz J (2003) J Colloid Interface Sci 270:187

    Article  CAS  Google Scholar 

  63. Gao Y, Li N, Zheng L, Bai X, Yu L, Zhao X, Zhang J, Zhao M, Li Z (2007) J Phys Chem B 111:2506

    Article  CAS  Google Scholar 

  64. Rojas O, Koetz J, Kosmella S, Tiersch B, Wacker P, Kramer M (2009) J Colloid Interface Sci 333:782

    Article  CAS  Google Scholar 

  65. Paul S, Bisal S, Moulik SP (1992) J Phys Chem 96:896

    Article  CAS  Google Scholar 

  66. Note C, Koetz J, Kosmella S (2006) J Colloid Interface Sci 302:662

    Article  CAS  Google Scholar 

  67. Koetz J, Lutter S, Fechner M (2008) Tenside Surf Det 45:326

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Koetz.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplementary Fig. S6

Partial phase diagram of the L2 phase of the quasi ternary system toluene–pentanol (1:1)/SDS/water or 10 wt.% of PalH at pH 4 (a) and pH 9 (b) determined at 25 and 40 °C (GIF 144 kb)

High Resolution Image (TIFF 517 kb)

Supplementary Fig. S7

Partial phase diagram of the L2 phase of the quasi ternary system toluene–pentanol (1:1)/SDS/water or 10 wt.% of PalH at pH 4 (a) and pH 9 (b) determined at 25 and 40 °C (GIF 141 kb)

High Resolution Image (TIFF 501 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fechner, M., Kramer, M., Kleinpeter, E. et al. Polyampholyte-modified ionic microemulsions. Colloid Polym Sci 287, 1145–1153 (2009). https://doi.org/10.1007/s00396-009-2074-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2074-4

Keywords

Navigation