Skip to main content
Log in

Synthesis and characterization of Naproxen intercalated Zn–Al layered double hydroxides

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this paper, naproxen was intercalated into Zn–Al layered double hydroxides (LDHs) by ion exchange method to obtain naproxen/LDHs nanohybrids. The effects of the contact time, the composition, and the structural charge density (σ S,T ) and the specific surface area of LDHs, and pH value on the uptake of naproxen on LDHs, and the release of naproxen from the naproxen/LDHs nanohybrids were investigated. The adsorption isotherm curves of naproxen on the LDHs obey the Langmuir equation, and apparent monolayer capacity (A m) in units of mmol m−2 increases with the increase of the σ S,T value of the LDHs samples. The release rate of naproxen from the naproxen/LDHs nanohybrids decreases with the increase of the σ S,T value of the LDHs samples and is much lower than that of naproxen troche, indicating that the naproxen/LDHs nanohybrid is an efficient drug-controlled release system. In the pH range of 6~11.5, the uptake amount (A eq) of naproxen on the LDHs decreases with the increase of pH value. The A m values of LDHs(Cl) are much higher than that of \( {\text{LDHs}}{\left( {{\text{CO}}^{{2 - }}_{3} } \right)} \), which may contribute to that LDHs(Cl), which has a stronger anion exchange ability than \( {\text{LDHs}}{\left( {{\text{CO}}^{{2 - }}_{3} } \right)} \). The naproxen molecules are possibly adsorbed on each surface of the basal layer of LDHs. In other words, a bilayer is formed in the gallery of LDHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Costantino U, Casciola M, Massinelli L, Nocchetti M, Vivani R (1997) Solid State Ion 97:203

    Article  CAS  Google Scholar 

  2. Hou WG, Su YL, Sun DJ, Zhang CG (2001) Langmuir 17:1885

    Article  CAS  Google Scholar 

  3. Yang QZ, Sun DJ, Zhang CG, Wang XJ, Zhao WA (2003) Langmuir 19:5570

    Article  CAS  Google Scholar 

  4. Meyn M, Beneke K, Lagaly G (1990) Inorg Chem 29:5210

    Article  Google Scholar 

  5. Ookubo A, Ooi K, Hayashi H (1993) Langmuir 9:1418

    Article  CAS  Google Scholar 

  6. Xu ZP, Zeng HC (2001) J Phys Chem B 105:1743

    Article  CAS  Google Scholar 

  7. Legrouri A, Badreddine M, Barroug A, De Roy A, Besse JP (1999) J Mater Sci Lett 18:1077

    Article  CAS  Google Scholar 

  8. Choy JH, Kwak SY, Park JS, Jeong YJ, Portier J (1999) J Am Chem Soc 121:1399

    Article  CAS  Google Scholar 

  9. Lopez-Salinas E, Garcia-Sanchez M, Montoya JA, Acosta DR, Abasolo JA, Schifter I (1997) Langmuir 13:4748

    Article  CAS  Google Scholar 

  10. Patzkó Á, Kun R, Hornok V, Dékány I, Engelhardt T, Schall N (2005) Colloids Interfaces A 265:64

    Article  Google Scholar 

  11. Dékány I, Berger F, Imrik K, Lagaly G (1997) Colloid Polym Sci 275:681

    Article  Google Scholar 

  12. Kun R, Balázs M, Dékány I (2005) Colloids Interfaces A 265:155

    Article  CAS  Google Scholar 

  13. Hornok V, Erdöhelyi A, Dékány I (2005) Colloid Polym Sci 283:1050

    Article  CAS  Google Scholar 

  14. Choy JH, Kwak SY, Jeong YJ, Park JS (2000) Angew Chem Int Ed 39:4042

    Article  CAS  Google Scholar 

  15. Khan AI, Lei L, Norquist AJ, O’Hare D (2001) Chem Commun 22:2342

    Article  Google Scholar 

  16. Ambrogi V, Fardella G, Grandolini G, Perioli L (2001) Int J Pharm 220:23

    Article  CAS  Google Scholar 

  17. bin Hussein MZ, Zainal Z, Yahaya AH, Foo DW (2002) J Control Release 82:417

    Article  CAS  Google Scholar 

  18. del Arco M, Gutiérrez S, Martín C, Rives V, Rocha J (2004) J Solid State Chem 177:3954

    Article  Google Scholar 

  19. Miyata S (1975) Clays Clay Miner 23:369

    Article  CAS  Google Scholar 

  20. Wei M, Shi SX, Wang J, Li Y, Duan X (2004) J Solid State Chem 177:2534

    Article  CAS  Google Scholar 

  21. Li LF, Hou WG, Dai XN, Liu CX (2004) Acta Chimica Sinica 62:429

    CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by National Key Basic Research Program of China (No. 2004CB418504), the National Natural Science Foundation of China (No. 20573065), and the Natural Science Foundation of Shandong Province of China (No. Z2006B06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Guo Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, WG., Jin, ZL. Synthesis and characterization of Naproxen intercalated Zn–Al layered double hydroxides. Colloid Polym Sci 285, 1449–1454 (2007). https://doi.org/10.1007/s00396-007-1704-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-007-1704-y

Keywords

Navigation