Skip to main content
Log in

Microhardness of α- and β-modified isotactic polypropylene at the initial stages of plastic deformation: analysis of micromechanical processes

  • Original Contributions
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The microindentation hardness,H, of uniaxially deformed isotactic polypropylene samples was determined near the neck region, as a function of the draw ratio. The microhardness technique appears to be a valuable tool to describe mechanical properties in localized regions within a material and is capable of following changes in the semicrystalline structure during deformation. Differences in the microhardness behaviour of the two types of polymorphic forms, α and β, of isotactic polypropylene are discussed in terms of the two specific types of morphology, i.e. the cross-hatched arrangement of the crystalline lamellae for the α form and the parallel lamellar stacking for the β form. The changes of H as a function of λ are shown to be in accordance with the transformation in the neck from the spherulitic into the fibre structure. The steep H-decrease observed in the neck region is discussed in the light of the nanomechanical processes as revealed by scanning electron microscopy. These include lamellar separation, micro-void formation and fibrillation. Finally, microindentation experiments carried out in the neck allow an estimation of the local draw ratio at which the maximum pore content in the polypropylene samples occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Moore EP (1996) Polypropylene handbook. Hanser Verlag, Munich

    Google Scholar 

  2. Karger-Kocsis J (ed) (1995) Polypropylene: structure, blends and composites, vol 1. Structure and morphology. Chapman and Hall, London

  3. Karian HG (ed) (1999) Handbook of polypropylene and polypropylene composites. Marcel Dekker, New York

    Google Scholar 

  4. Michler GH (1992) Kunststoff-Mikromechanik: morphologie, deformations—und Bruchmechanismen. Hanser, München

    Google Scholar 

  5. Peterlin A (1975) Colloid Polym Sci 253:809

    CAS  Google Scholar 

  6. Varga J (2002) J Macromol Sci Phys B 41(4–6):1121

    Article  Google Scholar 

  7. Kausch HH, Plummer CJG (2001) Encyclopedia of materials: science and technology. Elsevier, Amsterdam

    Google Scholar 

  8. Baltá Calleja FJ, Peterlin A (1970) J Macromol Sci Phys B 4(3):519

    Google Scholar 

  9. Huang MR, Li XG, Fang BR (1995) J Appl Polym Sci 56:1323

    Article  CAS  Google Scholar 

  10. Fujiyama M (1999) Intern Polym Processing 14:75

    CAS  Google Scholar 

  11. Turner Jones A, Aizlewood JM, Beckett DR (1964) Makromol Chem 75:134

    Article  CAS  Google Scholar 

  12. Riekel C, Karger-Kocsis J (1999) Polymer 40:541

    Article  CAS  Google Scholar 

  13. Karger-Kocsis J (1996) Polym Bull 36:119

    Article  CAS  Google Scholar 

  14. Grein C, Plummer CJG, Kausch HH, Germain Y, Béguelin P (2002) Polymer 43:3279

    Article  CAS  Google Scholar 

  15. Chen HB, Karger-Kocsis J, Wu JS, Varga J (2002) Polymer 43:6505

    Article  CAS  Google Scholar 

  16. Tjong SC, Shen JS, Li RKY (1996) Polym Eng Sci 36:100

    Article  CAS  Google Scholar 

  17. Dijkstra PTS, van Dijk DJ, Huétnik J (2002) Polym Eng Sci 42:152

    Article  Google Scholar 

  18. Aboulfaraj M, G’Sell C, Ulrich B, Dahoun A (1995) Polymer 731–742

    Google Scholar 

  19. Li JX, Cheung WL, Chan CM (1999) Polymer 40:3641

    Article  CAS  Google Scholar 

  20. Yoshida T, Fujiwara Y, Asano T (1983) Polymer 24:925

    Article  CAS  Google Scholar 

  21. Chu F, Yamaoka T, Kimura Y (1994) Polymer 35:3442

    Article  CAS  Google Scholar 

  22. Baltá Calleja FJ, Fakirov S (2000) Microhardness of polymers. Cambridge University Press, Cambridge

    Google Scholar 

  23. Baltá Calleja FJ In: Cunha AM, Fakirov S (eds) Structure development during polymer processing. Kluwer, Dordrecht pp 145–162

  24. Michler GH, Ensslen M, Baltá-Calleja FJ, Könczöl L, Döll W (1999) Phil Mag A 79:167

    Article  CAS  Google Scholar 

  25. García Gutiérrez MC, Michler GH, Henning S, Schade C (2001) J Macromol Sci Phys B 40:797

    Article  Google Scholar 

  26. Baltá Calleja FJ, Giri L, Ezquerra TA, Fakirov S, Roslaniec Z (1997) J Macromol Sci Phys B 36:655

    Google Scholar 

  27. Baltá Calleja FJ (1976) Colloid Polym Sci 254:258

    Google Scholar 

  28. Flores A, Baltá Calleja FJ, Basset DC (1999) J Polym Sci Polym Phys 37:3151

    Article  CAS  Google Scholar 

  29. Krumova M, Karger-Kocsis J, Baltá Calleja FJ, Fakirov S (1999) J Mater Sci 34:2371

    Article  CAS  Google Scholar 

  30. Borealis data sheet P1078 07.06.2001 Ed. 1, http://www.borealisgroup.com/public/customer/data_sheets/Data_sheets.jsp

  31. Borealis data sheet P0932 10.01.2002 Ed. 5, http://www.borealisgroup.com/public/customer/data_sheets/Data_sheets.jsp

  32. Olley R, Bassett DC, Hine PJ, Ward IM (1993) J Mater Sci 28:1107

    Article  CAS  Google Scholar 

  33. Baltá Calleja FJ, Martínez Salazar J, Asano T (1988) J Mater Sci Lett 7:165

    Article  Google Scholar 

  34. Michler GH (1992) Colloid Polym Sci 270:627

    CAS  Google Scholar 

  35. Henning S, Adhikari R, Michler GH, Baltá Calleja FJ, Karger-Kocsis J (2004) Macromol Symp 214:157–171

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft and the Kultusministerium des Landes Sachsen-Anhalt and MEC, Spain (grant FIS 2004-01331) for the support of this work. The financial support from the Deutscher Akademischer Austauschdient (DAAD) and from the Alexander von Humboldt-Stiftung is gratefully acknowledged. One of us (G.H.M.) thanks the Dirección General de Universidades, Ministerio de Educación, Spain, for the award of the Humboldt-Mutis Prize. S. Henning acknowledges a research scholarship from the Max-Buchner-Forschungsstiftung (MBFSt 2280) of the DECHEMA. Prof. J. Karger-Kocsis is thanked for the cooperation and supply of the materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Michler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henning, S., Michler, G.H., Ania, F. et al. Microhardness of α- and β-modified isotactic polypropylene at the initial stages of plastic deformation: analysis of micromechanical processes. Colloid Polym Sci 283, 486–495 (2005). https://doi.org/10.1007/s00396-004-1199-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-004-1199-8

Keywords

Navigation