Skip to main content
Log in

Physicochemical investigation of cobalt–iron cyanide nanoparticles synthesized by a novel solid–solid reaction in confined space

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Cobalt–iron cyanide (Cox[Fe(CN)6]) nanoparticles have been synthesized by a novel solid–solid reaction in the confined space of dry sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reversed micelles dispersed in n-heptane. The reaction has been carried out by mixing two dry AOT/n-heptane solutions containing CoCl2 and K4Fe(CN)6 or K3Fe(CN)6 nanoparticles in the micellar core, respectively. By UV-Vis spectroscopy it was ascertained that, after the mixing process, the formation of stable nanoparticles is fast and complete. Microcalorimetric measurements of the thermal effect due to the Cox[Fe(CN)6] nanoparticle formation allowed the determination of the stoichiometric ratio (x) and of the molar enthalpy of reaction in the core of AOT reversed micelles. The observed behavior suggests the occurrence of confinement effects and surfactant adsorption on the nanoparticle surface. Further structural information was achieved by small-angle X-ray scattering (SAXS) measurements. From all liquid samples, interesting salt/AOT composites were prepared by simple evaporation of the apolar solvent. Size, crystal structure, and electronic properties of Cox[Fe(CN)6] nanoparticles containing composites were obtained by wide-angle X-ray scattering (WAXS) and X-ray photoelectron spectroscopy (XPS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2a–c
Fig. 3a–c
Fig. 4 a
Fig. 5a,b
Fig. 6a–c
Fig. 7
Fig. 8a,b
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13a–d
Fig. 14a–c
Fig. 15a–c

Similar content being viewed by others

References

  1. Calandra P, Longo A, Turco Liveri V (2003) J Phys Chem B 107:25–30

    Article  CAS  Google Scholar 

  2. Calandra P, Longo A, Marcianò V, Turco Liveri V (2003) J Phys Chem B 107:6724–6729

    Article  CAS  Google Scholar 

  3. Turco Liveri V (1999) Curr Top Colloids Interface Sci 3:65–74

    Google Scholar 

  4. Calandra P, Longo A, Turco Liveri V (2001) Colloid Polym Sci 279:1112–1117

    Article  CAS  Google Scholar 

  5. Chow PY, Ding J, Wang XZ, Chew CH, Gan LM (2000) Phys Stat Sol A 180:547–553

    Article  CAS  Google Scholar 

  6. Vesta CR, Zhang ZH (2002) Chem Mater 14:3817–3822

    Article  Google Scholar 

  7. Ruland W (1974) J Appl Cryst 7:383–386

    Article  Google Scholar 

  8. Feign LA, Svergun DI (1987) Structure analysis by small angle X-ray and neutron scattering. Plenum Press, New York

  9. Giordano C, Longo A, Turco Liveri V, Venezia AM (2003) Colloid Polym Sci 281:229–238

    CAS  Google Scholar 

  10. Kitahara A, Kon-no K (1966) J Phys Chem 70:3394–3398

    CAS  Google Scholar 

  11. Nitsch W, Plucinski P (1990) J Coll Int Sci 136:338–351

    CAS  Google Scholar 

  12. Linke WF, Seidell A (1958) Solubilities of inorganic and metal organic coumpounds, vol 1. Van Nostrand, New York

  13. Handbook of chemistry and physics, 67th edn (1986–1987) CRC Press, Boca Raton, FL

  14. Eastoe J, Stebbing S, Dalton J, Heenan R (1996) Colloid Surf A 119:123–131

    Article  CAS  Google Scholar 

  15. Sunamoto J, Hamada T (1978) Bull Chem Soc Jpn 51:3130–3135

    Google Scholar 

  16. Nicholls D (1973) Compr Inorg Chem 3:1025–1051

    Google Scholar 

  17. Naiman CS (1961) J Chem Phys 35:323–328

    CAS  Google Scholar 

  18. Bonner OD, Choi YS (1974) J Phys Chem 78:1723–1727

    CAS  Google Scholar 

  19. Onori G, Santucci A (1993) J Phys Chem 97:5430–5434

    CAS  Google Scholar 

  20. North AN, Dore JC, McDonald JA, Robinson BH, Heenan RK, Howe AM (1986) Colloids Surf 19:21–29

    CAS  Google Scholar 

  21. Mackeben S, Müller-Goymann CC (2000) Int J Pharm 196:207–210

    CAS  PubMed  Google Scholar 

  22. Kotlarchyk M, Huang JS, Chen SH (1985) J Phys Chem 89:4382–4386

    CAS  Google Scholar 

  23. Hirai M, Kawai-Hirai R, Yabuki S, Takizawa T, Hirai T, Kobayashi K, Amemiya Y, Oya M (1995) J Phys Chem 99:6652–6660

    CAS  Google Scholar 

  24. Ekwall P, Mandell L, Fontell K (1970) J Coll Int Sci 33:215–235

    CAS  Google Scholar 

  25. Chastain (ed) (1992) Handbook of X-ray photoelectron spectroscopy. Perkin–Elmer, Eden Prairie, MN

Download references

Acknowledgements

Financial support from Università di Palermo is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Turco Liveri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giordano, C., Longo, A., Ruggirello, A. et al. Physicochemical investigation of cobalt–iron cyanide nanoparticles synthesized by a novel solid–solid reaction in confined space. Colloid Polym Sci 283, 265–276 (2004). https://doi.org/10.1007/s00396-004-1124-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-004-1124-1

Keywords

Navigation