Skip to main content
Log in

Phase transitions in aqueous triblock copolymers: NMR relaxation studies

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Longitudinal NMR relaxation times were used to investigate the thermal transitions occurring in an aqueous triblock copolymer of the poly(oxyethylene)–poly(oxypropylene)–poly(oxyethylene) family. In such a system molecule–micelle and micelle–liquid crystal transitions are observed, depending on temperature and composition. The longitudinal relaxation time, R 1, significantly changes when the aforementioned phase transitions take place. In the case of molecule–micelle equilibrium, changes in R 1 values of the methyl (and methynic) group signal, located in the lipophilic portion of block copolymers, are observed. The effect is ascribed to a significant dehydration of the poly(oxypropylene) chains, as a consequence of micelle formation. Conversely, the thermal transitions from micelles to liquid-crystalline phases are associated with significant changes in the relaxation time of poly(oxyethylene) units. The latter effect is tentatively ascribed to a partial dehydration and/or interdigitation of the poly(oxyethylene) moieties in the block copolymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Schmolka JR (1977) J Am Oil Chem Soc 54:110

    CAS  Google Scholar 

  2. Bahadur P, Ries G (1991) Tenside Surfactant Deterg 28:173

    CAS  Google Scholar 

  3. Alexandridis P, Zidt S, Hou D, Khan A (1996) Langmuir 12:2690

    Article  Google Scholar 

  4. La Mesa C (2000) J Thermal Anal Calor 61:493

    Article  Google Scholar 

  5. Alexandridis P, Athanassiou V, Fukuda S, Hatton TA (1994) Langmuir 10:2604

    CAS  Google Scholar 

  6. Alexandridis P, Olsson U, Lindman B (1998) Langmuir 14:2627

    Article  CAS  Google Scholar 

  7. Eiser E, Molino F, Porte G, Piton X (2000) Rheol Acta 39:201

    Article  CAS  Google Scholar 

  8. Brown W, Schillen K, Hvidt S (1992) J Phys Chem 96:6038

    CAS  Google Scholar 

  9. Schillen K, Glatter O, Brown W (1993) Prog Colloid Polym Sci 93:66

    CAS  Google Scholar 

  10. Borbèly S (1998) Physica B 241–243:1016

  11. Alexandridis P, Olsson U, Lindman B (1995) Macromolecules 28:7700

    CAS  Google Scholar 

  12. Zhou Z, Chu B (1988) J Colloid Interface Sci 126:171

    CAS  Google Scholar 

  13. Godward J, Heatley F, Booth C (1995) J Chem Soc Faraday Trans 91:1491

    CAS  Google Scholar 

  14. Godward J, Heatley F, Smith S, Tanodekaew S, Yang YW, Booth C (1995) J Chem Soc Faraday Trans 91:3461

    CAS  Google Scholar 

  15. Michels B, Waton G, Zana R (1997) Langmuir 13:3111

    Article  CAS  Google Scholar 

  16. BASF Co (1996) Pluronic and Tetronic Surfactants. Technical brochure. BASF Co, Parsippany, NJ

  17. Iovino A (2001) Thesis. "La Sapienza" Universiy, Rome

  18. Iovino A, Galantini L, Sesta B, La Mesa C, Capitani D, Segre AL (submitted)

  19. Capitani D, Crescenzi V, De Angelis A, Segre AL (2001) Macromolecules 34:4136

    Article  CAS  Google Scholar 

  20. Endom L, Hertz H, Thul B, Zeidler M (1967) Ber Bunsen-Ges Phys Chem 71:1008

    Google Scholar 

  21. Cinelli S, Onori G, Santucci A (2001) Colloids Surf B 20:297

    Article  CAS  Google Scholar 

  22. Nivaggioli T, Tsao B, Alexandridis P, Hatton TA (1995) Langmuir 11:119

    CAS  Google Scholar 

  23. Liao C, Choi S-M, Mallamace F, Chen S-H (2000) J Appl Crystallogr 33:677

    Article  CAS  Google Scholar 

  24. Loennqvit I, Khan A, Soederman O (1991) J Colloid Interface Sci 144:401

    Google Scholar 

  25. Ulmius J, Wennerström H (1977) J Magn Res 28:309

    CAS  Google Scholar 

  26. Li H, Yu G, Price C, Booth C, Hecht E, Hoffmann H (1997) Macromolecules 30:1347

    Article  CAS  Google Scholar 

  27. Karlström G (1985) J Phys Chem 89:4962

    Google Scholar 

  28. Zulauf M, Weckstrom K, Hayter JB, De Giorgio V, Corti M (1985) J Phys Chem 89:3411

    CAS  Google Scholar 

  29. Saeki S, Kuwahara N, Nakata M, Kaneko M (1976) Polymer 17:685

    CAS  Google Scholar 

  30. Hurter PN, Sceutjens JMHM, Hatton TA (1993) Macromolecules 26:5592

    CAS  Google Scholar 

  31. Linse P (1993) J Phys Chem 97:13896

    CAS  Google Scholar 

  32. Mortensen K, Pedersen JS (1992) Macromolecules 25:5440

    Google Scholar 

  33. Israelachvili JN, Mitchell DM, Ninham BW (1976) J Chem Soc Faraday Trans 1 72:1525

    Google Scholar 

Download references

Acknowledgements

Part of the work presented here is also reported in Ref. [17], in partial fulfilment of the graduate thesis in chemistry of A.I. M.I.U.R. is acknowledged for financial support (funds for years 2002–2004). The present work was performed under auspices of COST P 15 Project on Interfacial Chemistry and Catalysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camillo La Mesa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

lovino, A., La Mesa, C., Capitani, D. et al. Phase transitions in aqueous triblock copolymers: NMR relaxation studies. Colloid Polym Sci 281, 1136–1141 (2003). https://doi.org/10.1007/s00396-003-0888-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-003-0888-z

Keywords

Navigation