Skip to main content

Advertisement

Log in

Crosstalk of human coronary perivascular adipose-derived stem cells with vascular cells: role of tissue factor

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The coronary perivascular adipose tissue (cPVAT) has been associated to the burden of cardiovascular risk factors and to the underlying vessel atherosclerotic plaque severity. Although the “outside to inside” hypothesis of PVAT-derived-adipokine regulation of vessel function is currently accepted, whether the resident mesenchymal stem cells (ASCs) in PVAT have a regulatory role on the underlying vascular arterial smooth muscle cells (VSMCs) is not known. Here, we investigated the interactions between resident PVAT-ASCs and VSMCs. ASCs were obtained from PVAT overlying the left anterior descending (LAD) coronary artery of hearts removed at heart transplant operations. PVAT was obtained both from patients with non-ischemic and ischemic heart disease as the cause of heart transplant. ASCs were isolated from PVAT, phenotypically characterized by flow cytometry, functionally tested for proliferation, and differentiation. Crosstalk between ASCs and VSMCs was investigated by co-culture studies. ASCs were detected in the adventitia of the LAD-PVAT showing differentiation capacity and angiogenic potential. ASCs obtained from PVAT of non-ischemic and ischemic hearts showed different tissue factor (TF) expression levels, different VSMCs recruitment capacity through the axis ERK1/2-ETS1 signaling and different angiogenic potential. Induced upregulation of TF in ASCs isolated from ischemic PVAT rescued their angiogenic capacity in subcutaneously implanted plugs in mice, whereas silencing TF in ASCs decreased the proangiogenic capacity of non-ischemic ASCs. The results indicate for the first time a novel mechanism of regulation of VSMCs by PVAT-ASCs in angiogenesis, mediated by TF expression in ASCs. Regulation of TF in ASCs may become a therapeutic intervention to increase cardiac protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data presented in this study are available in this article (and Supplementary Materials).

Abbreviations

ASCs:

Adipose-derived stem cells

AT:

Adipose tissue

cPVAT:

Coronary perivascular adipose tissue

ECs:

Endothelial cells

LAD:

Left anterior descending

PVAT:

Perivascular adipose tissue

SVF:

Stromal vascular fraction

TF:

Tissue factor

VECMs:

Vascular endothelial cell markers

VSMCs:

Vascular smooth muscle cells

References

  1. Arderiu G, Espinosa S, Peña E, Aledo R, Badimon L (2016) PAR2-SMAD3 in microvascular endothelial cells is indispensable for vascular stability via tissue factor signaling. J Mol Cell Biol 8:255–270. https://doi.org/10.1093/JMCB/MJV065

    Article  CAS  PubMed  Google Scholar 

  2. Arderiu G, Lambert C, Ballesta C, Moscatiello F, Vilahur G, Badimon L (2020) Cardiovascular risk factors and differential transcriptomic profile of the subcutaneous and visceral adipose tissue and their resident stem cells. Cells. https://doi.org/10.3390/CELLS9102235

    Article  PubMed  PubMed Central  Google Scholar 

  3. Arderiu G, Mendieta G, Gallinat A, Lambert C, Díez-Caballero A, Ballesta C, Badimon L (2023) Type 2 diabetes in obesity: a systems biology study on serum and adipose tissue proteomic profiles. Int J Mol Sci. https://doi.org/10.3390/IJMS24010827

    Article  PubMed  PubMed Central  Google Scholar 

  4. Arderiu G, Peña E, Aledo R, Badimon L (2012) Tissue factor-Akt signaling triggers microvessel formation. J Thromb Haemost 10:1895–1905. https://doi.org/10.1111/J.1538-7836.2012.04848.X

    Article  CAS  PubMed  Google Scholar 

  5. Arderiu G, Peña E, Aledo R, Espinosa S, Badimon L (2012) Ets-1 transcription is required in tissue factor driven microvessel formation and stabilization. Angiogenesis 15:657–669. https://doi.org/10.1007/S10456-012-9293-X

    Article  CAS  PubMed  Google Scholar 

  6. Arderiu G, Peña E, Aledo R, Juan-Babot O, Badimon L (2011) Tissue factor regulates microvessel formation and stabilization by induction of chemokine (C–C motif) ligand 2 expression. Arterioscler Thromb Vasc Biol 31:2607–2615. https://doi.org/10.1161/ATVBAHA.111.233536

    Article  CAS  PubMed  Google Scholar 

  7. Arderiu G, Peña E, Aledo R, Juan-Babot O, Crespo J, Vilahur G, Oñate B, Moscatiello F, Badimon L (2019) MicroRNA-145 regulates the differentiation of adipose stem cells toward microvascular endothelial cells and promotes angiogenesis. Circ Res 125:74–89. https://doi.org/10.1161/CIRCRESAHA.118.314290

    Article  CAS  PubMed  Google Scholar 

  8. Bekhite MM, Finkensieper A, Rebhan J, Huse S, Schultze-Mosgau S, Figulla HR, Sauer H, Wartenberg M (2014) Hypoxia, leptin, and vascular endothelial growth factor stimulate vascular endothelial cell differentiation of human adipose tissue-derived stem cells. Stem Cells Dev 23:333–351. https://doi.org/10.1089/SCD.2013.0268

    Article  CAS  PubMed  Google Scholar 

  9. Belting M, Ahamed J, Ruf W (2005) Signaling of the tissue factor coagulation pathway in angiogenesis and cancer. Arterioscler Thromb Vasc Biol 25:1545–1550. https://doi.org/10.1161/01.ATV.0000171155.05809.BF

    Article  CAS  PubMed  Google Scholar 

  10. Bennett MR, Sinha S, Owens GK (2016) Vascular smooth muscle cells in atherosclerosis. Circ Res 118:692–702. https://doi.org/10.1161/CIRCRESAHA.115.306361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Camino-López S, Badimon L, González A, Canals D, Peña E, Llorente-Cortés V (2009) Aggregated low density lipoprotein induces tissue factor by inhibiting sphingomyelinase activity in human vascular smooth muscle cells. J Thromb Haemost 7:2137–2146. https://doi.org/10.1111/J.1538-7836.2009.03638.X

    Article  PubMed  Google Scholar 

  12. Fitzgibbons TP, Czech MP (2014) Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations. J Am Heart Assoc. https://doi.org/10.1161/JAHA.113.000582

    Article  PubMed  PubMed Central  Google Scholar 

  13. Folkman J (1996) Tumor angiogenesis and tissue factor. Nat Med 2:167–168. https://doi.org/10.1038/NM0296-167

    Article  CAS  PubMed  Google Scholar 

  14. Gil-Ortega M, Somoza B, Huang Y, Gollasch M, Fernández-Alfonso MS (2015) Regional differences in perivascular adipose tissue impacting vascular homeostasis. Trends Endocrinol Metab 26:367–375. https://doi.org/10.1016/J.TEM.2015.04.003

    Article  CAS  PubMed  Google Scholar 

  15. Greif M, Becker A, von Ziegler F, Lebherz C, Lehrke M, Broedl UC, Tittus J, Parhofer K, Becker C, Reiser M, Knez A, Leber AW (2009) Pericardial adipose tissue determined by dual source CT is a risk factor for coronary atherosclerosis. Arterioscler Thromb Vasc Biol 29:781–786. https://doi.org/10.1161/ATVBAHA.108.180653

    Article  CAS  PubMed  Google Scholar 

  16. Grover SP, Mackman N (2018) Tissue factor: an essential mediator of hemostasis and trigger of thrombosis. Arterioscler Thromb Vasc Biol 38:709–725. https://doi.org/10.1161/ATVBAHA.117.309846

    Article  CAS  PubMed  Google Scholar 

  17. Howson KM, Aplin AC, Gelati M, Alessandri G, Parati EA, Nicosia RF (2005) The postnatal rat aorta contains pericyte progenitor cells that form spheroidal colonies in suspension culture. Am J Physiol Cell Physiol. https://doi.org/10.1152/AJPCELL.00168.2005

    Article  PubMed  Google Scholar 

  18. Ishii T, Asuwa N, Masuda S, Ishikawa Y (1998) The effects of a myocardial bridge on coronary atherosclerosis and ischaemia. J Pathol 185:4–9. https://doi.org/10.1002/(sici)1096-9896(199805)185:1%3c4::aid-path50%3e3.0.co;2-3

    Article  CAS  PubMed  Google Scholar 

  19. Ishikawa Y, Akasaka Y, Ito K, Akishima Y, Kimura M, Kiguchi H, Fujimoto A, Ishii T (2006) Significance of anatomical properties of myocardial bridge on atherosclerosis evolution in the left anterior descending coronary artery. Atherosclerosis 186:380–389. https://doi.org/10.1016/J.ATHEROSCLEROSIS.2005.07.024

    Article  CAS  PubMed  Google Scholar 

  20. Lambert C, Arderiu G, Bejar MT, Crespo J, Baldellou M, Juan-Babot O, Badimon L (2019) Stem cells from human cardiac adipose tissue depots show different gene expression and functional capacities. Stem Cell Res Ther. https://doi.org/10.1186/S13287-019-1460-1

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mackman N (2005) Tissue-specific hemostasis in mice. Arterioscler Thromb Vasc Biol 25:2273–2281. https://doi.org/10.1161/01.ATV.0000183884.06371.52

    Article  CAS  PubMed  Google Scholar 

  22. Mackman N (2009) The many faces of tissue factor. J Thromb Haemost 7(Suppl 1):136–139. https://doi.org/10.1111/J.1538-7836.2009.03368.X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mahabadi AA, Reinsch N, Lehmann N, Altenbernd J, Kälsch H, Seibel RM, Erbel R, Möhlenkamp S (2010) Association of pericoronary fat volume with atherosclerotic plaque burden in the underlying coronary artery: a segment analysis. Atherosclerosis 211:195–199. https://doi.org/10.1016/J.ATHEROSCLEROSIS.2010.02.013

    Article  CAS  PubMed  Google Scholar 

  24. Matsuda K, Falkenberg KJ, Woods AA, Choi YS, Morrison WA, Dilley RJ (2013) Adipose-derived stem cells promote angiogenesis and tissue formation for in vivo tissue engineering. Tissue Eng Part A 19:1327–1335. https://doi.org/10.1089/ten.TEA.2012.0391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mazzotta C, Basu S, Gower AC, Karki S, Farb MG, Sroczynski E, Zizza E, Sarhan A, Pande AN, Walsh K, Dobrilovic N, Gokce N (2021) Perivascular adipose tissue inflammation in ischemic heart disease. Arterioscler Thromb Vasc Biol 41:1239–1250. https://doi.org/10.1161/ATVBAHA.120.315865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Michel JB, Virmani R, Arbustini E, Pasterkamp G (2011) Intraplaque haemorrhages as the trigger of plaque vulnerability. Eur Heart J. https://doi.org/10.1093/EURHEARTJ/EHR054

    Article  PubMed  PubMed Central  Google Scholar 

  27. Moreno PR, Purushothaman KR, Fuster V, Echeverri D, Truszczynska H, Sharma SK, Badimon JJ, O’Connor WN (2004) Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: implications for plaque vulnerability. Circulation 110:2032–2038. https://doi.org/10.1161/01.CIR.0000143233.87854.23

    Article  PubMed  Google Scholar 

  28. Omar A, Chatterjee TK, Tang Y, Hui DY, Weintraub NL (2014) Proinflammatory phenotype of perivascular adipocytes. Arterioscler Thromb Vasc Biol 34:1631–1636. https://doi.org/10.1161/ATVBAHA.114.303030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pasquinelli G, Tazzari PL, Vaselli C, Foroni L, Buzzi M, Storci G, Alviano F, Ricci F, Bonafè M, Orrico C, Bagnara GP, Stella A, Conte R (2007) Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells. Stem Cells 25:1627–1634. https://doi.org/10.1634/STEMCELLS.2006-0731

    Article  CAS  PubMed  Google Scholar 

  30. Peña E, Arderiu G, Badimon L (2012) Subcellular localization of tissue factor and human coronary artery smooth muscle cell migration. J Thromb Haemost 10:2373–2382. https://doi.org/10.1111/J.1538-7836.2012.04910.X

    Article  PubMed  Google Scholar 

  31. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109:1292–1298. https://doi.org/10.1161/01.CIR.0000121425.42966.F1

    Article  PubMed  Google Scholar 

  32. Rosito GA, Massaro JM, Hoffmann U, Ruberg FL, Mahabadi AA, Vasan RS, O’Donnell CJ, Fox CS (2008) Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation 117:605–613. https://doi.org/10.1161/CIRCULATIONAHA.107.743062

    Article  PubMed  Google Scholar 

  33. Rubina K, Kalinina N, Efimenko A, Lopatina T, Melikhova V, Tsokolaeva Z, Sysoeva V, Tkachuk V, Parfyonova Y (2009) Adipose stromal cells stimulate angiogenesis via promoting progenitor cell differentiation, secretion of angiogenic factors, and enhancing vessel maturation. Tissue Eng Part A 15:2039–2050. https://doi.org/10.1089/TEN.TEA.2008.0359

    Article  CAS  PubMed  Google Scholar 

  34. Ruf W, Disse J, Carneiro-Lobo TC, Yokota N, Schaffner F (2011) Tissue factor and cell signalling in cancer progression and thrombosis. J Thromb Haemost 9(Suppl 1):306–315. https://doi.org/10.1111/J.1538-7836.2011.04318.X

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schwalie PC, Dong H, Zachara M, Russeil J, Alpern D, Akchiche N, Caprara C, Sun W, Schlaudraff KU, Soldati G, Wolfrum C, Deplancke B (2018) A stromal cell population that inhibits adipogenesis in mammalian fat depots. Nature 559:103–108. https://doi.org/10.1038/S41586-018-0226-8

    Article  CAS  PubMed  Google Scholar 

  36. Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis—pubMed. https://pubmed.ncbi.nlm.nih.gov/2719077/. Accessed 16 Mar 2023

  37. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis. Am Heart Assoc Circ 92:1355–1374. https://doi.org/10.1161/01.cir.92.5.1355

    Article  CAS  Google Scholar 

  38. Taguchi R, Takasu J, Itani Y, Yamamoto R, Yokoyama K, Watanabe S, Masuda Y (2001) Pericardial fat accumulation in men as a risk factor for coronary artery disease. Atherosclerosis 157:203–209. https://doi.org/10.1016/S0021-9150(00)00709-7

    Article  CAS  PubMed  Google Scholar 

  39. Taqueti VR, di Carli MF, Jerosch-Herold M, Sukhova GK, Murthy VL, Folco EJ, Kwong RY, Ozaki CK, Belkin M, Nahrendorf M, Weissleder R, Libby P (2014) Increased microvascularization and vessel permeability associate with active inflammation in human atheromata. Circ Cardiovasc Imaging 7:920–929. https://doi.org/10.1161/CIRCIMAGING.114.002113

    Article  PubMed  PubMed Central  Google Scholar 

  40. Toschi V, Gallo R, Lettino M, Fallon JT, David Gertz S, Fernández-Ortiz A, Chesebro JH, Badimon L, Nemerson Y, Fuster V, Badimon JJ (1997) Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation 95:594–599. https://doi.org/10.1161/01.CIR.95.3.594

    Article  CAS  PubMed  Google Scholar 

  41. Tousoulis D, Oikonomou E, Economou EK, Crea F, Kaski JC (2016) Inflammatory cytokines in atherosclerosis: current therapeutic approaches. Eur Heart J 37:1723–1735. https://doi.org/10.1093/EURHEARTJ/EHV759

    Article  CAS  PubMed  Google Scholar 

  42. Virdis A (2016) Endothelial dysfunction in obesity: role of inflammation. High Blood Press Cardiovasc Prev 23:83–85. https://doi.org/10.1007/s40292-016-0133-8

    Article  CAS  PubMed  Google Scholar 

  43. Yamaguchi Y, Shibata A, Yoshida T, Tanihata A, Hayashi H, Kitada R, Ehara S, Izumiya Y, Fukuda D (2022) Epicardial adipose tissue volume is an independent predictor of left ventricular reverse remodeling in patients with non-ischemic cardiomyopathy. Int J Cardiol 356:60–65. https://doi.org/10.1016/J.IJCARD.2022.03.051

    Article  PubMed  Google Scholar 

  44. Zengin E, Chalajour F, Gehling UM, Ito WD, Treede H, Lauke H, Weil J, Reichenspurner H, Kilic N, Ergün S (2006) Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development 133:1543–1551. https://doi.org/10.1242/DEV.02315

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Olaya Garcia for her excellent technical assistance. We thank the Fundación de Investigación Cardiovascular and the Fundación Jesus Serra for their support.

Funding

This work was supported by the Plan Nacional Proyectos Investigación Desarrollo (PID2019-107160RB-I00 to L.B.); Red Española de Terapias Avanzadas (TERAV-RD21/0017/0013 to L.B.); Centro de Investigación Biomedica en Red Cardiovascular (CIBERCV-CB16/11/00411 to L.B.); and Instituto de Salud Carlos III (ISCIII) (PI20/01517 to G.A.), cofounded by Fondo Europeo de Desarrollo Regional (FEDER) “Una Manera de Hacer Europa.” We thank the Generalitat of Catalunya (Secretaria d'Universitats i Recerca, Departament d'Economia i Coneixement, 2021 SGR 01006) and the Fundación Investigación Cardiovascular Fundación Jesus Serra for their continuous support.

Author information

Authors and Affiliations

Authors

Contributions

GA, MTB and LB conceived and designed the study; MTB acquired the samples; GA, MTB, AC-U and EP performed experimental work and analyzed the data; GA and MTB wrote the original draft and GA and LB revised and edited the manuscript; founding acquisition was performed by GA and LB. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Gemma Arderiu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Subject codes: Stem cells, Angiogenesis, ischemia, Basic Science Research, and Vascular Biology.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 8234 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arderiu, G., Bejar, M.T., Civit-Urgell, A. et al. Crosstalk of human coronary perivascular adipose-derived stem cells with vascular cells: role of tissue factor. Basic Res Cardiol 119, 291–307 (2024). https://doi.org/10.1007/s00395-024-01037-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-024-01037-1

Keywords

Navigation