Skip to main content

Advertisement

Log in

Soluble Flt-1 links microvascular disease with heart failure in CKD

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Chronic kidney disease (CKD) is associated with an increased risk of heart failure (HF). Elevated plasma concentrations of soluble Flt-1 (sFlt-1) have been linked to cardiovascular disease in CKD patients, but whether sFlt-1 contributes to HF in CKD is still unknown. To provide evidence that concludes a pathophysiological role of sFlt-1 in CKD-associated HF, we measured plasma sFlt-1 concentrations in 586 patients with angiographically documented coronary artery disease and renal function classified according to estimated glomerular filtration rate (eGFR). sFlt-1 concentrations correlated negatively with eGFR and were associated with signs of heart failure, based on New York Heart Association functional class and reduced left ventricular ejection fraction (LVEF), and early mortality. Additionally, rats treated with recombinant sFlt-1 showed a 15 % reduction in LVEF and a 29 % reduction in cardiac output compared with control rats. High sFlt-1 concentrations were associated with a 15 % reduction in heart capillary density (number of vessels/cardiomyocyte) and a 24 % reduction in myocardial blood volume. Electron microscopy and histological analysis revealed mitochondrial damage and interstitial fibrosis in the hearts of sFlt-1-treated, but not control rats. In 5/6-nephrectomised rats, an animal model of CKD, sFlt-1 antagonism with recombinant VEGF121 preserved heart microvasculature and significantly improved heart function. Overall, these findings suggest that a component of cardiovascular risk in CKD patients could be directly attributed to sFlt-1. Assessment of patients with CKD confirmed that sFlt-1 concentrations were inversely correlated with renal function, while studies in rats suggested that sFlt-1 may link microvascular disease with HF in CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amann K, Ritz E (2000) Microvascular disease—the Cinderella of uraemic heart disease. Nephrol Dial Transplant 15:1493–1503. doi:10.1093/ndt/15.10.1493

    Article  CAS  PubMed  Google Scholar 

  2. Bellamy L, Casas JP, Hingorani AD, Williams DJ (2007) Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ 335:974. doi:10.1136/bmj.39335.385301.BE

    Article  PubMed Central  PubMed  Google Scholar 

  3. Bencini PL, Montagnino G, Citterio A, Graziani G, Crosti C, Ponticelli C (1985) Cutaneous abnormalities in uremic patients. Nephron 40:316–321

    Article  CAS  PubMed  Google Scholar 

  4. Bergmann A, Ahmad S, Cudmore M, Gruber AD, Wittschen P, Lindenmaier W, Christofori G, Gross V, Gonzalves AC, Grone HJ, Ahmed A, Weich HA (2010) Reduction of circulating soluble Flt-1 alleviates preeclampsia-like symptoms in a mouse model. J Cell Mol Med 14:1857–1867. doi:10.1111/j.1582-4934.2009.00820.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Brand E, Pavenstadt H, Schmieder RE, Engelbertz C, Fobker M, Pinnschmidt HO, Wegscheider K, Breithardt G, Reinecke H (2013) The Coronary Artery Disease and Renal Failure (CAD-REF) registry: trial design, methods, and aims. Am Heart J 166:449–456. doi:10.1016/j.ahj.2013.06.010

    Article  PubMed  Google Scholar 

  6. Bridges JP, Gilbert JS, Colson D, Gilbert SA, Dukes MP, Ryan MJ, Granger JP (2009) Oxidative stress contributes to soluble fms-like tyrosine kinase-1 induced vascular dysfunction in pregnant rats. Am J Hypertens 22:564–568. doi:10.1038/ajh.2009.24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Cabiati M, Campan M, Caselli C, Prescimone T, Giannessi D, Del RS (2010) Sequencing and cardiac expression of natriuretic peptide receptors A and C in normal and heart failure pigs. Regul Pept 162:12–17. doi:10.1016/j.regpep.2010.02.004

    Article  CAS  PubMed  Google Scholar 

  8. Cindrova-Davies T, Sanders DA, Burton GJ, Charnock-Jones DS (2011) Soluble FLT1 sensitizes endothelial cells to inflammatory cytokines by antagonizing VEGF receptor-mediated signalling. Cardiovasc Res 89:671–679. doi:10.1093/cvr/cvq346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Currie G, Delles C (2013) Proteinuria and its relation to cardiovascular disease. Int J Nephrol Renovasc Dis 7:13–24. doi:10.2147/IJNRD.S40522

    PubMed Central  PubMed  Google Scholar 

  10. De Boer RA, Pinto YM, Van Veldhuisen DJ (2003) The imbalance between oxygen demand and supply as a potential mechanism in the pathophysiology of heart failure: the role of microvascular growth and abnormalities. Microcirculation 10:113–126. doi:10.1038/sj.mn.7800188

    Article  PubMed  Google Scholar 

  11. Del RS, Andreassi MG, Clerico A, Biagini A, Giannessi D (2001) Endothelin-1, endothelin-1 receptors and cardiac natriuretic peptides in failing human heart. Life Sci 68:2715–2730

    Article  Google Scholar 

  12. Di Marco GS, Reuter S, Hillebrand U, Amler S, Konig M, Larger E, Oberleithner H, Brand E, Pavenstadt H, Brand M (2009) The soluble VEGF receptor sFlt1 contributes to endothelial dysfunction in CKD. J Am Soc Nephrol 20:2235–2245. doi:10.1681/ASN.2009010061

    Article  PubMed Central  PubMed  Google Scholar 

  13. Di Marco GS, Reuter S, Kentrup D, Ting L, Ting L, Grabner A, Jacobi AM, Pavenstadt H, Baba HA, Tiemann K, Brand M (2011) Cardioprotective effect of calcineurin inhibition in an animal model of renal disease. Eur Heart J 32:1935–1945. doi:10.1093/eurheartj/ehq436

    Article  PubMed  Google Scholar 

  14. Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, Jafar TH, Heerspink HJ, Mann JF, Matsushita K, Wen CP (2013) Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet 382:339–352. doi:10.1016/S0140-6736(13)60595-4

    Article  PubMed  Google Scholar 

  15. Gavin JB, Maxwell L, Edgar SG (1998) Microvascular involvement in cardiac pathology. J Mol Cell Cardiol 30:2531–2540. doi:10.1006/jmcc.1998.0824

    Article  CAS  PubMed  Google Scholar 

  16. Giordano FJ, Gerber HP, Williams SP, VanBruggen N, Bunting S, Ruiz-Lozano P, Gu Y, Nath AK, Huang Y, Hickey R, Dalton N, Peterson KL, Ross J Jr, Chien KR, Ferrara N (2001) A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc Natl Acad Sci USA 98:5780–5785. doi:10.1073/pnas.091415198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351:1296–1305. doi:10.1056/NEJMoa041031

    Article  CAS  PubMed  Google Scholar 

  18. Gordon O, Gilon D, He Z, May D, Lazarus A, Oppenheim A, Keshet E (2012) Vascular endothelial growth factor-induced neovascularization rescues cardiac function but not adverse remodeling at advanced ischemic heart disease. Arterioscler Thromb Vasc Biol 32:1642–1651. doi:10.1161/ATVBAHA.112.248674

    Article  CAS  PubMed  Google Scholar 

  19. Guo Q, Carrero JJ, Yu X, Barany P, Qureshi AR, Eriksson M, Anderstam B, Chmielewski M, Heimburger O, Stenvinkel P, Lindholm B, Axelsson J (2009) Associations of VEGF and its receptors sVEGFR-1 and -2 with cardiovascular disease and survival in prevalent haemodialysis patients. Nephrol Dial Transplant 24:3468–3473. doi:10.1093/ndt/gfp315

    Article  CAS  PubMed  Google Scholar 

  20. Hara A, Wada T, Furuichi K, Sakai N, Kawachi H, Shimizu F, Shibuya M, Matsushima K, Yokoyama H, Egashira K, Kaneko S (2006) Blockade of VEGF accelerates proteinuria, via decrease in nephrin expression in rat crescentic glomerulonephritis. Kidney Int 69:1986–1995. doi:10.1038/sj.ki.5000439

    Article  CAS  PubMed  Google Scholar 

  21. Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600. doi:10.1038/nrm1983

    Article  CAS  PubMed  Google Scholar 

  22. Hilfiker-Kleiner D, Limbourg A, Drexler H (2005) STAT3-mediated activation of myocardial capillary growth. Trends Cardiovasc Med 15:152–157. doi:10.1016/j.tcm.2005.05.002

    Article  CAS  PubMed  Google Scholar 

  23. Hochholzer W, Reichlin T, Stelzig C, Hochholzer K, Meissner J, Breidthardt T, Reiter M, Duehsler B, Freidank H, Winkler K, Twerenbold R, Mueller C (2011) Impact of soluble fms-like tyrosine kinase-1 and placental growth factor serum levels for risk stratification and early diagnosis in patients with suspected acute myocardial infarction. Eur Heart J 32:326–335. doi:10.1093/eurheartj/ehq429

    Article  CAS  PubMed  Google Scholar 

  24. Jacobi J, Porst M, Cordasic N, Namer B, Schmieder RE, Eckardt KU, Hilgers KF (2006) Subtotal nephrectomy impairs ischemia-induced angiogenesis and hindlimb re-perfusion in rats. Kidney Int 69:2013–2021. doi:10.1038/sj.ki.5000448

    Article  CAS  PubMed  Google Scholar 

  25. Kendall RL, Wang G, Thomas KA (1996) Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem Biophys Res Commun 226:324–328. doi:10.1006/bbrc.1996.1355

    Article  CAS  PubMed  Google Scholar 

  26. Kendrick J, Chonchol MB (2008) Nontraditional risk factors for cardiovascular disease in patients with chronic kidney disease. Nat Clin Pract Nephrol 4:672–681. doi:10.1038/ncpneph0954

    Article  PubMed  Google Scholar 

  27. Kim SY, Lee SH, Park S, Kang SM, Chung N, Shim WH, Cho SY, Sun HJ, Manabe I, Jang Y (2011) Vascular endothelial growth factor, soluble fms-like tyrosine kinase 1, and the severity of coronary artery disease. Angiology 62:176–183. doi:10.1177/0003319710370963

    Article  CAS  PubMed  Google Scholar 

  28. Kitzman DW, Upadhya B, Vasu S (2015) What the dead can teach the living: systemic nature of heart failure with preserved ejection fraction. Circulation 131:522–524. doi:10.1161/CIRCULATIONAHA.114.014420

    Article  PubMed  Google Scholar 

  29. Kottgen A, Russell SD, Loehr LR, Crainiceanu CM, Rosamond WD, Chang PP, Chambless LE, Coresh J (2007) Reduced kidney function as a risk factor for incident heart failure: the atherosclerosis risk in communities (ARIC) study. J Am Soc Nephrol 18:1307–1315. doi:10.1681/ASN.2006101159

    Article  CAS  PubMed  Google Scholar 

  30. Ky B, French B, Ruparel K, Sweitzer NK, Fang JC, Levy WC, Sawyer DB, Cappola TP (2011) The vascular marker soluble fms-like tyrosine kinase 1 is associated with disease severity and adverse outcomes in chronic heart failure. J Am Coll Cardiol 58:386–394. doi:10.1016/j.jacc.2011.03.032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Lavainne F, Meffray E, Pepper RJ, Neel M, Delcroix C, Salama AD, Fakhouri F (2014) Heparin use during dialysis sessions induces an increase in the antiangiogenic factor soluble Flt1. Nephrol Dial Transplant 29:1225–1231. doi:10.1093/ndt/gft517

    Article  CAS  PubMed  Google Scholar 

  32. Levine RJ, Maynard SE, Qian C, Lim KH, England LJ, Yu KF, Schisterman EF, Thadhani R, Sachs BP, Epstein FH, Sibai BM, Sukhatme VP, Karumanchi SA (2004) Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 350:672–683. doi:10.1056/NEJMoa031884

    Article  CAS  PubMed  Google Scholar 

  33. Levy AP (1999) A cellular paradigm for the failure to increase vascular endothelial growth factor in chronically hypoxic states. Coron Artery Dis 10:427–430

    Article  CAS  PubMed  Google Scholar 

  34. Li F, Hagaman JR, Kim HS, Maeda N, Jennette JC, Faber JE, Karumanchi SA, Smithies O, Takahashi N (2012) eNOS deficiency acts through endothelin to aggravate sFlt-1-induced pre-eclampsia-like phenotype. J Am Soc Nephrol 23:652–660. doi:10.1681/ASN.2011040369

    Article  PubMed Central  PubMed  Google Scholar 

  35. Luttun A, Carmeliet P (2003) Soluble VEGF receptor Flt1: the elusive preeclampsia factor discovered? J Clin Invest 111:600–602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Matsui M, Takeda Y, Uemura S, Matsumoto T, Seno A, Onoue K, Tsushima H, Morimoto K, Soeda T, Okayama S, Somekawa S, Samejima KI, Kawata H, Kawakami R, Nakatani K, Iwano M, Saito Y (2013) Suppressed soluble Fms-like tyrosine kinase-1 production aggravates atherosclerosis in chronic kidney disease. Kidney Int 85:393–403. doi:10.1038/ki.2013.339

    Article  PubMed  Google Scholar 

  37. May D, Gilon D, Djonov V, Itin A, Lazarus A, Gordon O, Rosenberger C, Keshet E (2008) Transgenic system for conditional induction and rescue of chronic myocardial hibernation provides insights into genomic programs of hibernation. Proc Natl Acad Sci USA 105:282–287. doi:10.1073/pnas.0707778105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, Libermann TA, Morgan JP, Sellke FW, Stillman IE, Epstein FH, Sukhatme VP, Karumanchi SA (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 111:649–658. doi:10.1172/JCI17189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Murphy SR, LaMarca B, Cockrell K, Arany M, Granger JP (2012) L-arginine supplementation abolishes the blood pressure and endothelin response to chronic increases in plasma sFlt-1 in pregnant rats. Am J Physiol Regul Integr Comp Physiol 302:R259–R263. doi:10.1152/ajpregu.00319.2011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Muttukrishna S, Swer M, Suri S, Jamil A, Calleja-Agius J, Gangooly S, Ludlow H, Jurkovic D, Jauniaux E (2011) Soluble Flt-1 and PlGF: new markers of early pregnancy loss? PLoS One 6:e18041. doi:10.1371/journal.pone.0018041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Neubauer S (2007) The failing heart—an engine out of fuel. N Engl J Med 356:1140–1151. doi:10.1056/NEJMra063052

    Article  PubMed  Google Scholar 

  42. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9–22

    CAS  PubMed  Google Scholar 

  43. O’Riordan E, Chen J, Brodsky SV, Smirnova I, Li H, Goligorsky MS (2005) Endothelial cell dysfunction: the syndrome in making. Kidney Int 67:1654–1658. doi:10.1111/j.1523-1755.2005.00256.x

    Article  PubMed  Google Scholar 

  44. Onoue K, Uemura S, Takeda Y, Somekawa S, Iwama H, Nishida T, Morikawa Y, Nakagawa H, Tsutsumi T, Sung JH, Takemoto Y, Soeda T, Okayama S, Ishigami K, Kawata H, Horii M, Nakajima T, Saito Y (2009) Usefulness of soluble Fms-like tyrosine kinase-1 as a biomarker of acute severe heart failure in patients with acute myocardial infarction. Am J Cardiol 104:1478–1483. doi:10.1016/j.amjcard.2009.07.016

    Article  CAS  PubMed  Google Scholar 

  45. Parodi EM, Kuhn B (2014) Signalling between microvascular endothelium and cardiomyocytes through neuregulin. Cardiovasc Res 102:194–204. doi:10.1093/cvr/cvu021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Patten IS, Rana S, Shahul S, Rowe GC, Jang C, Liu L, Hacker MR, Rhee JS, Mitchell J, Mahmood F, Hess P, Farrell C, Koulisis N, Khankin EV, Burke SD, Tudorache I, Bauersachs J, del MF, Hilfiker-Kleiner D, Karumanchi SA, Arany Z (2012) Cardiac angiogenic imbalance leads to peripartum cardiomyopathy. Nature 485:333–338. doi:10.1038/nature11040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Rajakumar A, Michael HM, Rajakumar PA, Shibata E, Hubel CA, Karumanchi SA, Thadhani R, Wolf M, Harger G, Markovic N (2005) Extra-placental expression of vascular endothelial growth factor receptor-1, (Flt-1) and soluble Flt-1 (sFlt-1), by peripheral blood mononuclear cells (PBMCs) in normotensive and preeclamptic pregnant women. Placenta 26:563–573. doi:10.1016/j.placenta.2004.09.001

    Article  CAS  PubMed  Google Scholar 

  48. Ramaciotti C, Sharkey A, McClellan G, Winegrad S (1992) Endothelial cells regulate cardiac contractility. Proc Natl Acad Sci USA 89:4033–4036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Sattar N, Greer IA (2002) Pregnancy complications and maternal cardiovascular risk: opportunities for intervention and screening? BMJ 325:157–160. doi:10.1136/bmj.325.7356.157

    Article  PubMed Central  PubMed  Google Scholar 

  50. Searle J, Slagman A, Gwosc S, Vollert JO, Holert F, Muller C, Muller R, Mockel M (2012) Soluble fms-like tyrosine kinase-1 (sFLT-1) predicts post-percutaneous coronary intervention (PCI) myocardial infarction (MI type 4a). Biomarkers 17:730–737. doi:10.3109/1354750X.2012.725428

    Article  CAS  PubMed  Google Scholar 

  51. Smith DH, Thorp ML, Gurwitz JH, McManus DD, Goldberg RJ, Allen LA, Hsu G, Sung SH, Magid DJ, Go AS (2013) Chronic kidney disease and outcomes in heart failure with preserved versus reduced ejection fraction: the Cardiovascular Research Network PRESERVE Study. Circ Cardiovasc Qual Outcomes 6:333–342. doi:10.1161/CIRCOUTCOMES.113.000221

    Article  PubMed Central  PubMed  Google Scholar 

  52. Thang OH, Serne EH, Grooteman MP, Smulders YM, ter Wee PM, Tangelder GJ, Nube MJ (2011) Capillary rarefaction in advanced chronic kidney disease is associated with high phosphorus and bicarbonate levels. Nephrol Dial Transplant 26:3529–3536. doi:10.1093/ndt/gfr089

    Article  CAS  PubMed  Google Scholar 

  53. Ventura-Clapier R, Garnier A, Veksler V, Joubert F (2011) Bioenergetics of the failing heart. Biochim Biophys Acta 1813:1360–1372. doi:10.1016/j.bbamcr.2010.09.006

    Article  CAS  PubMed  Google Scholar 

  54. Vorovich E, French B, Ky B, Goldberg L, Fang JC, Sweitzer NK, Cappola TP (2014) Biomarker predictors of cardiac hospitalization in chronic heart failure: a recurrent event analysis. J Card Fail 20:569–576. doi:10.1016/j.cardfail.2014.05.013

    Article  CAS  PubMed  Google Scholar 

  55. Widyantoro B, Emoto N, Nakayama K, Anggrahini DW, Adiarto S, Iwasa N, Yagi K, Miyagawa K, Rikitake Y, Suzuki T, Kisanuki YY, Yanagisawa M, Hirata K (2010) Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation 121:2407–2418. doi:10.1161/CIRCULATIONAHA.110.938217

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Katrin Beul and Richard Holtmeier for their excellent technical assistance. This work was supported by the Bundesministerium für Bildung und Forschung [01GI0701], Deutsche Forschungsgemeinschaft [BR2262/3-1, SFB656 C3/C7 and Br1589/8-2], Else-Kröner Fresenius Stiftung [P38/09//A55/09], KfH Kuratorium für Dialyse und Nierentransplantation, and Stifterverband für die Deutsche Wissenschaft/Simon-Claussen-Stiftung [H1405409999915626].

Conflict of interest

H. R. has received speaker honoraria from B.R.A.H.M.S., Bristol-Myers Squibb, Cordis, Daiichi-Sankyo, Medtronic, The Medicine Company, Novartis and Sanofi-Aventis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Brand.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Marco, G.S., Kentrup, D., Reuter, S. et al. Soluble Flt-1 links microvascular disease with heart failure in CKD. Basic Res Cardiol 110, 30 (2015). https://doi.org/10.1007/s00395-015-0487-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-015-0487-4

Keywords

Navigation