Skip to main content

Advertisement

Log in

Postconditioning with glucagon like peptide-2 reduces ischemia/reperfusion injury in isolated rat hearts: role of survival kinases and mitochondrial KATP channels

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

We recently reported that heart expresses functional receptors for the anorexigenic glucagon-like peptide (GLP)-2. Activation of these cardiac receptors affected basal heart performance through extracellular regulated kinase (ERK1/2) activation. Since ERK1/2 is considered one of the prosurvival kinases of postconditioning cardioprotective pathways, we hypothesized that GLP-2 directly protects the heart against ischemia/reperfusion (I/R) injury via prosurvival kinases. Wistar rat hearts were retrogradely perfused on a Langendorff perfusion apparatus. After 40-min stabilization, hearts underwent 30-min global ischemia and 120-min reperfusion (I/R group). In GLP-2 group, the hearts received 20-min GLP-2 (10−7 M) infusion at the beginning of the 120-min reperfusion. Perfusion pressure and left ventricular pressure (LVP) were monitored. Infarct size was evaluated by nitroblue-tetrazolium staining. Compared with the I/R group, GLP-2-treated hearts showed a significant reduction of infarct size and of postischemic diastolic LVP (index of contracture), together with a sharp improvement of developed LVP recovery (index of contractility). The protective effects were abolished by co-infusion with phosphatidylinositol 3-kinase inhibitor, Wortmannin (WT), the ERK1/2 inhibitor, PD98059, or the mitochondrial KATP channel blocker, 5-hydroxydecanoate. GLP-2 effects were accompanied by increased phosphorylation of protein kinase B (PKB/Akt), ERK1/2 and glycogen synthase kinase (GSK3β). After 7-min reperfusion, WT blocked Akt and GSK3β phosphorylation. After 30-min reperfusion, WT inhibited phosphorylation of all kinases. In conclusion, the data suggest that GLP-2, given in early reperfusion, as postconditioning, protects against myocardial I/R injury, limiting infarct size, and improving post-ischemic mechanical recovery. It seems that the GLP-2-protection of rat heart involves multiple prosurvival kinases and mitochondrial KATP channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Angelone T, Filice E, Quintieri AM, Imbrogno S, Amodio N, Pasqua T, Pellegrino D, Mulè F, Cerra MC (2010) Receptor identification and physiological caracterization of glucagon-like peptide-2 in the rat heart. Nutr Metab Cardiovasc Dis 22:486–494. doi:10.1016/j.numecd.2010.07.014

    Article  PubMed  Google Scholar 

  2. Ban K, Kim KH, Cho CK, Sauvé M, Diamandis EP, Backx PH, Drucker DJ, Husain M (2010) Glucagon-like peptide (GLP)-1(9-36)amide-mediated cytoprotection is blocked by exendin(9-39) yet does not require the known GLP-1 receptor. Endocrinology 151:1520–1531. doi:10.1210/en.2009-1197

    Article  PubMed  CAS  Google Scholar 

  3. Boengler K, Hilfiker-Kleiner D, Heusch G, Schulz R (2010) Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res Cardiol 105:771–785. doi:10.1007/s00395-010-0124-1

    Article  PubMed  CAS  Google Scholar 

  4. Bose AK, Mocanu MM, Carr RD, Yellon DM (2005) Glucagon like peptide-1 is protective against myocardial ischemia/reperfusion injury when given either as a preconditioning mimetic or at reperfusion in an isolated rat heart model. Cardiovasc Drugs Ther 19:9–11. doi:10.1007/s10557-007-6030-6

    Article  PubMed  Google Scholar 

  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 7:248–254

    Article  Google Scholar 

  6. Cerra MC, De Iuri L, Angelone T, Corti A, Tota B (2006) Recombinant N-terminal fragments of chromogranin-A modulate cardiac function of the Langendorff-perfused rat heart. Basic Res Cardiol 100:1–10. doi:10.1007/s00395-005-0547-2

    Google Scholar 

  7. Chance WT, Foley-Nelson T, Thomas I, Balasubramaniam A (1997) Prevention of parenteral nutrition-induced gut hypoplasia by coinfusion of glucagon-like peptide-2. Am J Physiol 273:G559–G563

    PubMed  CAS  Google Scholar 

  8. Cohen MV, Downey JM (2011) Ischemic postconditioning: from receptor to end-effector. Antioxid Redox Signal 14:821–831. doi:10.1089/ars.2010.3318

    Article  PubMed  CAS  Google Scholar 

  9. Darling CE, Jiang R, Maynard M, Whittaker P, Vinten-Johansen J, Przyklenk K (2005) Postconditioning via stuttering reperfusion limits myocardial infarct size in rabbit hearts: role of ERK1/2. Am J Physiol Heart Circ Physiol 289:H1618–H1626. doi:10.1152/ajpheart.00055.2005

    Article  PubMed  CAS  Google Scholar 

  10. Drucker DJ (1998) Glucagon-like peptides. Diabetes 47:159–169. doi:10.1210/en.142.2.521

    Article  PubMed  CAS  Google Scholar 

  11. Dube PE, Brubaker PL (2007) Frontiers in glucagon-like peptide-2: multiple actions, multiple mediators. Am J Physiol Endocrinol Metab 293:E460–E465. doi:10.1152/ajpendo.00149.2007

    Article  PubMed  CAS  Google Scholar 

  12. Gomez L, Paillard M, Thibault H, Derumeaux G, Ovize M (2008) Inhibition of GSK3beta by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion. Circulation 117:2761–2768. doi:10.1161/CIRCULATIONAHA.107.755066

    Article  PubMed  CAS  Google Scholar 

  13. Guan L, Gong D, Tian N, Zou Y (2005) Uncoupling protein 2 involved in protection of glucagon-like peptide 2 in small intestine with ischemia-reperfusion injury in mice. Dig Dis Sci 50:554–560. doi:10.1007/s10620-005-2474-3

    Article  PubMed  CAS  Google Scholar 

  14. Hausenloy DJ, Baxter G, Bell R, Bøtker HE, Davidson SM, Downey J, Heusch G, Kitakaze M, Lecour S, Mentzer R, Mocanu MM, Ovize M, Schulz R, Shannon R, Walker M, Walkinshaw G, Yellon DM (2010) Translating novel strategies for cardioprotection: the Hatter Workshop recommendations. Basic Res Cardiol 105:677–686. doi:10.1007/s00395-010-0121-4

    Article  PubMed  Google Scholar 

  15. Hausenloy DJ, Lecour S, Yellon DM (2011) Reperfusion injury salvage kinase and survivor activating factor enhancement prosurvival signaling pathways in ischaemic postconditioning: two sides of the same coin. Antioxid Redox Signal 14:893–907. doi:10.1089/ars.2010.3360

    Article  PubMed  CAS  Google Scholar 

  16. Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM (2005) Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol 288:H971–H976. doi:10.1152/ajpheart.00374.2004

    Article  PubMed  CAS  Google Scholar 

  17. Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia-reperfusion injury: targeting the reperfusion injury salvage kinase (RISK)-pathway. Cardiovasc Res 61:448–460. doi:10.1016/j.cardiores.2003.09.024

    Article  PubMed  CAS  Google Scholar 

  18. Heusch G (2009) No risk, no cardioprotection? A critical perspective. Cardiovasc Res 84:173–175. doi:10.1093/cvr/cvp298

    Article  PubMed  CAS  Google Scholar 

  19. Heusch G, Musiolik J, Gedik N, Skyschally A (2011) Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ Res 109:1302–1308. doi:10.1161/CIRCRESAHA.111.255604

    Article  PubMed  CAS  Google Scholar 

  20. Hönisch A, Theuring N, Ebner B, Wagner C, Strasser RH, Weinbrenner C (2010) Postconditioning with levosimendan reduces the infarct size involving the PI3 K pathway and KATP-channel activation but is independent of PDE-III inhibition. Basic Res Cardiol 105:155–167. doi:10.1007/s00395-009-0064-9

    Article  PubMed  Google Scholar 

  21. Hoosein NM, Gurd RS (1984) Human glucagon-like peptides 1 and 2 activate rat brain adenylate cyclase. FEBS Lett 178:83–86. doi:10.1016/0014-5793(84)81245-4

    Article  PubMed  CAS  Google Scholar 

  22. Jeppesen PB, Sanguinetti EL, Buchman A, Howard L, Scolapio JS, Ziegler TR, Gregory J, Tappenden KA, Holst J, Mortensen PB (2005) Teduglutide (ALX-0600), a dipeptidyl peptidase IV resistant glucagon-like peptide 2 analogue, improves intestinal function in short bowel syndrome patients. Gut 54:1224–1231. doi:10.1136/gut.2004.061440

    Article  PubMed  CAS  Google Scholar 

  23. L’Heureux MC, Brubaker PL (2003) Glucagon-like peptide-2 and common therapeutics in a murine model of ulcerative colitis. J Pharmacol Exp Ther 306:347–354. doi:10.1124/jpet.103.051771

    Article  PubMed  Google Scholar 

  24. Lovshin J, Estall J, Yusta B, Brown TJ, Drucker DJ (2001) Glucagon-like peptide (GLP)-2 action in the murine central nervous system is enhanced by elimination of GLP-1 receptor signaling. J Biol Chem 276:21489–21499. doi:10.1074/jbc.M009382200

    Article  PubMed  CAS  Google Scholar 

  25. Lund A, Vilsbøll T, Bagger JI, Holst JJ, Knop FK (2011) The separate and combined impact of the intestinal hormones, GIP, GLP-1, and GLP-2, on glucagon secretion in type 2 diabetes. Am J Physiol Endocrinol Metab 300:E1038–E1046. doi:10.1152/ajpendo.00665.2010

    Article  PubMed  CAS  Google Scholar 

  26. Matsubara M, Kanemoto S, Leshnower BG, Albone EF, Hinmon R, Plappert T, Gorman JH 3rd, Gorman RC (2011) Single dose GLP-1-Tf ameliorates myocardial ischemia/reperfusion injury. J Surg Res 165:38–45. doi:10.1016/j.jss.2009.03.016

    Article  PubMed  CAS  Google Scholar 

  27. Munroe DG, Gupta AK, Kooshesh F, Vyas TB, Rizkalla G, Wang H, Demchyshyn L, Yang ZJ, Kamboj RK, Chen H, McCallum K, Sumner-Smith M, Drucker DJ, Crivici A (1999) Prototypic G protein coupled receptor for the intestinotrophic factor glucagon-like peptide 2. Proc Natl Acad Sci USA 96:1569–1573. doi:10.1073/pnas.96.4.1569

    Article  PubMed  CAS  Google Scholar 

  28. Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shah A, Elahi D, Shannon RP (2004) Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 109:962–965. doi:10.1161/01.CIR.0000120505.91348.58

    Article  PubMed  CAS  Google Scholar 

  29. Pagliaro P, Mancardi D, Rastaldo R, Penna C, Gattullo D, Miranda KM, Feelisch M, Wink DA, Kass DA, Paolocci N (2003) Nitroxyl affords thiol-sensitive myocardial protective effects akin to early preconditioning. Free Radic Biol Med 34:33–43. doi:10.1016/S0891-5849(02)01179-6

    Article  PubMed  CAS  Google Scholar 

  30. Penna C, Alloatti G, Cappello S, Gattullo D, Berta G, Mognetti B, Losano G, Pagliaro P (2005) Platelet-activating factor induces cardioprotection in isolated rat heart akin to ischaemic preconditioning: role of phosphoinositide 3-kinase and protein kinase C activation. Am J Physiol Heart Circ Physiol 288:H2512–H2520. doi:10.1152/ajpheart.00599.2004

    Article  PubMed  CAS  Google Scholar 

  31. Penna C, Mancardi D, Raimondo S, Geuna S, Pagliaro P (2008) The paradigm of postconditioning to protect the heart. J Cell Mol Med 12:435–458. doi:10.1111/j.1582-4934.2007.00210.x

    Article  PubMed  CAS  Google Scholar 

  32. Penna C, Mancardi D, Rastaldo R, Losano G, Pagliaro P (2007) Intermittent activation of bradykinin B2 receptors and mitochondrial KATP channels trigger cardiac postconditioning through redox signaling. Cardiovasc Res 75:168–177. doi:10.1016/j.cardiores.2007.03.001

    Article  PubMed  CAS  Google Scholar 

  33. Penna C, Perrelli MG, Raimondo S, Tullio F, Merlino A, Moro F, Geuna S, Mancardi D, Pagliaro P (2009) Postconditioning induces an anti-apoptotic effect and preserves mitochondrial integrity in isolated rat hearts. Biochim Biophys Acta 1787:780–794. doi:10.1016/j.bbabio.2009.03.013

    Google Scholar 

  34. Penna C, Rastaldo R, Mancardi D, Raimondo S, Cappello S, Gattullo D, Losano G, Pagliaro P (2006) Post-conditioning induced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrial ATP-sensitive K + channel and protein kinase C activation. Basic Res Cardiol 101:180–189. doi:10.1007/s00395-006-0584-5

    Article  PubMed  CAS  Google Scholar 

  35. Perez A, Duxbury M, Rocha FG, Ramsanahie AP, Farivar RS, Varnholt H, Ito H, Wong H, Rounds J, Zinner MJ, Whang EE, Ashley SW (2005) Glucagon-like peptide 2 is an endogenous mediator of postresection intestinal adaptation. J Parenter Enteral Nutr 29:97–101. doi:10.1177/014860710502900297

    Article  CAS  Google Scholar 

  36. Read PA, Hoole SP, White PA, Khan FZ, O’Sullivan M, West NE, Dutka DP (2011) A pilot study to assess whether glucagon-like Peptide-1 protects the heart from ischemic dysfunction and attenuates stunning after coronary balloon occlusion in humans. Circ Cardiovasc Interv 4:266–272. doi:10.1161/CIRCINTERVENTIONS.110.960476

    Article  PubMed  CAS  Google Scholar 

  37. Schulman D, Latchman DS, Yellon DM (2002) Urocortin protects the heart from reperfusion injury via upregulation of p42/p44 MAPK signaling pathway. Am J Physiol Heart Circ Physiol 283:H1481–H1488. doi:10.1152/ajpheart.01089.2001

    PubMed  CAS  Google Scholar 

  38. Schwartz Longacre L, Kloner RA, Arai AE, Baines CP, Bolli R, Braunwald E, Downey J, Gibbons RJ, Gottlieb RA, Heusch G, Jennings RB, Lefer DJ, Mentzer RM, Murphy E, Ovize M, Ping P, Przyklenk K, Sack MN, Vander Heide RS, Vinten-Johansen J, Yellon DM (2011) New horizons in cardioprotection: recommendations from the 2010 national heart, lung, and blood institute workshop. Circulation 124:1172–1179. doi:10.1161/CIRCULATIONAHA.111.032698

    Article  PubMed  Google Scholar 

  39. Shi X, Li X, Wang Y, Zhang K, Zhou F, Chan L, Li D, Guan X (2011) Glucagon-like peptide-2-stimulated protein synthesis through the PI 3Kinase-dependent Akt-mTOR signaling pathway. Am J Physiol Endocrinol Metab 300:E554–E563. doi:10.1152/ajpendo.00620.2010

    Article  PubMed  CAS  Google Scholar 

  40. Simpkin JC, Yellon DM, Davidson SM, Lim SY, Wynne AM, Smith CC (2007) Apelin-13 and apelin-36 exhibit direct cardioprotective activity against ischemia-reperfusion injury. Basic Res Cardiol 102:518–528. doi:10.1007/s00395-007-0671-2

    Article  PubMed  CAS  Google Scholar 

  41. Sivaraman V, Mudalagiri NR, Di Salvo C, Kolvekar S, Hayward M, Yap J, Keogh B, Hausenloy DJ, Yellon DM (2007) Postconditioning protects human atrial muscle through the activation of the RISK pathway. Basic Res Cardiol 102:453–459. doi:10.1007/s00395-007-0664-1

    Article  PubMed  Google Scholar 

  42. Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz R, Heusch G (2009) Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res 104:15–18. doi:10.1161/CIRCRESAHA.108.186429

    Article  PubMed  CAS  Google Scholar 

  43. Skyschally A, van Caster P, Iliodromitis EK, Schulz R, Kremastinos DT, Heusch G (2009) Ischemic postconditioning: experimental models and protocol algorithms. Basic Res Cardiol 104:469–483. doi:10.1007/s00395-009-0040-4

    Article  PubMed  Google Scholar 

  44. Tamareille S, Mateus V, Ghaboura N, Jeanneteau J, Croué A, Henrion D, Furber A, Prunier F (2009) RISK and SAFE signaling pathway interactions in remote limb ischemic perconditioning in combination with local ischemic postconditioning. Basic Res Cardiol 106:1329–1339. doi:10.1007/s00395-011-0210-z

    Article  Google Scholar 

  45. Tang-Christensen M, Larsen PJ, Thulesen J, Romer J, Vrang N (2000) The proglucagon-derived peptide, glucagon-like peptide-2, is a neurotransmitter involved in the regulation of food intake. Nat Med 6:802–807. doi:10.1038/77535

    Article  PubMed  CAS  Google Scholar 

  46. Tsang A, Hausenloy D, Mocanu M, Yellon D (2004) Postconditioning: a form of “Modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 95:230–232. doi:10.1161/01.RES.0000138303.76488.fe

    Article  PubMed  CAS  Google Scholar 

  47. Vinten-Johansen J, Zhao ZQ, Zatta AJ, Kin H, Halkos ME, Kerendi F (2005) Postconditioning: a new link in nature’s armor against myocardial ischemia-reperfusion injury. Basic Res Cardiol 100:295–310. doi:10.1007/s00395-005-0523-x

    Article  PubMed  CAS  Google Scholar 

  48. Yang XM, Philipp S, Downey JM, Cohen MV (2005) Postconditioning’s protection is not dependent on circulating blood factors or cells but involves adenosine receptors and requires PI3–kinase and guanylyl cyclase activation. Basic Res Cardiol 100:57–63. doi:10.1007/s00395-004-0498-4

    Article  PubMed  CAS  Google Scholar 

  49. Yang XM, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV (2004) Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol 44:1103–1110. doi:10.1016/j.jacc.2004.05.060

    Article  PubMed  Google Scholar 

  50. Ye Y, Perez-Polo JR, Aguilar D, Birnbaum Y (2011) The potential effects of anti-diabetic medications on myocardial ischemia-reperfusion injury. Basic Res Cardiol 106:925–952. doi:10.1007/s00395-011-0216-6

    Article  PubMed  CAS  Google Scholar 

  51. Zhang W, Zhu W, Zhang J, Li N, Li J (2008) Protective effects of glucagon-like peptide 2 on intestinal ischemia-reperfusion rats. Microsurgery 28:285–290. doi:10.1002/micr.20491

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministero dell’Istruzione, dell’Università e della Ricerca of Italy (Programma di Ricerca Scientifica di Interesse Nazionale: M. C. Cerra; MURST 60 %: M. C. Cerra, P. Pagliaro, C. Penna, T. Angelone), the “Dottorato di Ricerca in Biologia Animale”, the “Dottorato di Fisiologia” University of Turin, the “Istituto Nazionale di Ricerca Cardiovascolare” (M. C. Cerra, T. Angelone, T. Pasqua), Regione Piemonte and “Compagnia San Paolo”- Italy (P. Pagliaro, C. Penna). The authors would like to thank Dr C. Angotti and Dr F. Tullio for the technical assistance.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Pagliaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penna, C., Pasqua, T., Perrelli, MG. et al. Postconditioning with glucagon like peptide-2 reduces ischemia/reperfusion injury in isolated rat hearts: role of survival kinases and mitochondrial KATP channels. Basic Res Cardiol 107, 272 (2012). https://doi.org/10.1007/s00395-012-0272-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-012-0272-6

Keywords

Navigation