Skip to main content

Advertisement

Log in

Diet–gut microbiome interaction and ferulic acid bioavailability: implications on neurodegenerative disorders

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose of the review

Ferulic acid (FA), which occurs naturally as the feruloylated sugar ester in grains, fruits, and vegetables, is critical for combating oxidative stress and alleviating neurodegenerative diseases resulting from free radical-generated protein aggregates in brain cells. However, FA cannot be absorbed in conjugated form. Therefore, strategies to improve the bioavailability of FA are gaining more importance. Ferulic acid esterases (FAE) of the gut microbiota are critical enzymes that facilitate FA release from feruloylated sugar ester conjugates and influence systemic health. This review provides insight into a nutrition-based approach to preventing neurodegenerative disorders such as Alzheimer’s and Parkinson’s by altering the diversity of FAE-producing gut microbiota.

Recent findings

The human gut is a niche for a highly dense microbial population. Nutrient components and the quality of food shape the gut microbiota. Microbiota–diet–host interaction primarily involves an array of enzymes that hydrolyse complex polysaccharides and release covalently attached moieties, thereby increasing their bio-accessibility. Moreover, genes encoding polysaccharide degrading enzymes are substrate inducible, giving selective microorganisms a competitive advantage in scavenging nutrients.

Summary

Nutraceutical therapy using specific food components holds promise as a prophylactic agent and as an adjunctive treatment strategy in neurotherapeutics, as it results in upregulation of polysaccharide utilisation loci containing fae genes in the gut microbiota, thereby increasing the release of FA and other antioxidant molecules and combat neurodegenerative processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5 

Similar content being viewed by others

Data availability

All data relevent to this study are included in the review.

References

  1. Saxena S, Caroni P (2011) Selective neuronal vulnerability in neurodegenerative diseases from stressor thresholds to degeneration. Neuron 71:35–48. https://doi.org/10.1016/j.neuron.2011.06.031

    Article  CAS  PubMed  Google Scholar 

  2. Virmani A, Pinto L, Binienda Z, Ali S (2013) Food, nutrigenomics, and neurodegeneration—neuroprotection by what you eat! Mol Neurobiol 48:353–362. https://doi.org/10.1007/s12035-013-8498-3

    Article  CAS  PubMed  Google Scholar 

  3. Serra D, Almeida LM, Dinis TCP (2020) Polyphenols in the management of brain disorders: modulation of the microbiota-gut-brain axis. Adv Food Nutr Res 91:1–27. https://doi.org/10.1016/bs.afnr.2019.08.001

    Article  CAS  PubMed  Google Scholar 

  4. Fang P, Kazmi SA, Jameson KG, Hsiao EY (2020) The microbiome as a modifier of neurodegenerative disease risk. Cell Host Microbe 28:201–222. https://doi.org/10.1016/j.chom.2020.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dinan TG, Cryan JF (2017) The microbiome-gut-brain axis in health and disease. Gastroenterol Clin 46:77–89. https://doi.org/10.1016/j.gtc.2016.09.007

    Article  Google Scholar 

  6. Rao M, Gershon MD (2016) The bowel and beyond: the enteric nervous system in neurological disorders. Nat Rev Gastroenterol Hepatol 13:517–528. https://doi.org/10.1038/nrgastro.2016.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Salonen A, Lahti L, Salojärvi J, Holtrop G, Korpela K, Duncan SH et al (2014) Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J 8:2218–2230. https://doi.org/10.1038/ismej.2014.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Choquenet B, Couteau C, Paparis E, Coiffard LJM (2008) Interest of ferulic acid ethyl ester in photoprotective creams: measure of efficacy by in vitro method. Nat Prod Res 22:1467–1471. https://doi.org/10.1080/14786410802144974

    Article  CAS  PubMed  Google Scholar 

  9. Singh YP, Rai H, Singh G, Singh GK, Mishra S, Kumar S et al (2021) A review on ferulic acid and analogues-based scaffolds for the management of Alzheimer’s disease. Eur J Med Chem 215:113278. https://doi.org/10.1016/j.ejmech.2021.113278

    Article  CAS  PubMed  Google Scholar 

  10. Srinivasan M, Sudheer AR, Menon VP (2007) Ferulic acid: therapeutic potential through its antioxidant property. J Clin Biochem Nutr 40:92–100. https://doi.org/10.3164/jcbn.40.92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sgarbossa A, Giacomazza D, Di Carlo M (2015) Ferulic acid: a hope for Alzheimer’s disease therapy from plants. Nutrients 7:5764–5782. https://doi.org/10.3390/nu7075246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chaudhary A, Jaswal VS, Choudhary S, Sonika SA, Beniwal V et al (2019) Ferulic acid: a promising therapeutic phytochemical and recent patents advances. Recent Pat Inflamm Allergy Drug Discov 13:115–123. https://doi.org/10.2174/1872213X13666190621125048

    Article  CAS  PubMed  Google Scholar 

  13. Zhao Z, Moghadasian MH (2008) Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: a review. Food Chem 109:691–702. https://doi.org/10.1016/j.foodchem.2008.02.039

    Article  CAS  PubMed  Google Scholar 

  14. Mathew S, Abraham TE (2004) Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. Crit Rev Biotechnol 24:59–83. https://doi.org/10.1080/07388550490491467

    Article  CAS  PubMed  Google Scholar 

  15. Gopalan N, Nampoothiri KM, Szakacs G, Parameswaran B, Pandey A (2016) Solid-state fermentation for the production of biomass valorizing feruloyl esterase. Biocatal Agric Biotechnol 7:7–13. https://doi.org/10.1016/j.bcab.2016.04.009

    Article  Google Scholar 

  16. Bunzel M, Ralph J, Funk C, Steinhart H (2003) Isolation and identification of a ferulic acid dehydrotrimer from saponified maize bran insoluble fiber. Eur Food Res Technol 217:128–133. https://doi.org/10.1007/s00217-003-0709-0

    Article  CAS  Google Scholar 

  17. Uraji M, Kimura M, Inoue Y, Kawakami K, Kumagai Y, Harazono K et al (2013) Enzymatic production of ferulic acid from defatted rice bran by using a combination of bacterial enzymes. Appl Biochem Biotechnol 171:1085–1093. https://doi.org/10.1007/s12010-013-0190-6

    Article  CAS  PubMed  Google Scholar 

  18. Bento-Silva A, Vaz Patto MC, do RosárioBronze M (2018) Relevance, structure and analysis of ferulic acid in maize cell walls. Food Chem 246:360–378. https://doi.org/10.1016/j.foodchem.2017.11.012

    Article  CAS  PubMed  Google Scholar 

  19. Adom KK, Liu RH (2002) Antioxidant activity of grains. J Agric Food Chem 50:6182–6187. https://doi.org/10.1021/jf0205099

    Article  CAS  PubMed  Google Scholar 

  20. Mateo Anson N, van den Berg R, Havenaar R, Bast A, Haenen GRMM (2009) Bioavailability of ferulic acid is determined by its bioaccessibility. J Cereal Sci 49:296–300. https://doi.org/10.1016/j.jcs.2008.12.001

    Article  CAS  Google Scholar 

  21. Cani PD (2018) Human gut microbiome: hopes, threats and promises. Gut 67:1716–1725. https://doi.org/10.1136/gutjnl-2018-316723

    Article  CAS  PubMed  Google Scholar 

  22. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180. https://doi.org/10.1038/nature09944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Groussin M, Mazel F, Alm EJ (2020) Co-evolution and co-speciation of host-gut bacteria systems. Cell Host Microbe 28:12–22. https://doi.org/10.1016/j.chom.2020.06.013

    Article  CAS  PubMed  Google Scholar 

  24. Liang S, Wu X, Jin F (2018) Gut-brain psychology: Rethinking psychology from the microbiota–gut–brain axis. Front Integr Neurosci 12:33. https://doi.org/10.3389/fnint.2018.00033

    Article  PubMed  PubMed Central  Google Scholar 

  25. Klement RJ, Pazienza V (2019) Impact of different types of diet on gut microbiota profiles and cancer prevention and treatment. Medicina 55:84. https://doi.org/10.3390/medicina55040084

    Article  PubMed  PubMed Central  Google Scholar 

  26. Asnicar F, Berry SE, Valdes AM, Nguyen LH, Piccinno G, Drew DA et al (2021) Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat Med 27:321–332. https://doi.org/10.1038/s41591-020-01183-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE et al (2018) Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555:623–628. https://doi.org/10.1038/nature25979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J et al (2017) The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev 81:e00036-e117. https://doi.org/10.1128/MMBR.00036-17

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P et al (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17:690–703. https://doi.org/10.1016/j.chom.2015.04.004

    Article  CAS  PubMed  Google Scholar 

  30. Murphy K, Curley D, O’Callaghan TF, O’Shea C-A, Dempsey EM, O’Toole PW et al (2017) The composition of human milk and infant faecal microbiota over the first three months of life: a pilot study. Sci Rep 7:40597. https://doi.org/10.1038/srep40597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lyons KE, Ryan CA, Dempsey EM, Ross RP, Stanton C (2020) Breast milk, a source of beneficial microbes and associated benefits for infant health. Nutrients 12:1039. https://doi.org/10.3390/nu12041039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Heintz-Buschart A, Wilmes P (2018) Human gut microbiome: function matters. Trends Microbiol 26:563–574. https://doi.org/10.1016/j.tim.2017.11.002

    Article  CAS  PubMed  Google Scholar 

  33. Zheng D, Liwinski T, Elinav E (2020) Interaction between microbiota and immunity in health and disease. Cell Res 30:492–506. https://doi.org/10.1038/s41422-020-0332-7

    Article  PubMed  PubMed Central  Google Scholar 

  34. Derrien M, Alvarez A-S, de Vos WM (2019) The gut microbiota in the first decade of life. Trends Microbiol 27:997–1010. https://doi.org/10.1016/j.tim.2019.08.001

    Article  CAS  PubMed  Google Scholar 

  35. De Filippo C, Di Paola M, Giani T, Tirelli F, Cimaz R (2019) Gut microbiota in children and altered profiles in juvenile idiopathic arthritis. J Autoimmun 98:1–12. https://doi.org/10.1016/j.jaut.2019.01.001

    Article  CAS  PubMed  Google Scholar 

  36. La-ongkham O, Nakphaichit M, Nakayama J, Keawsompong S, Nitisinprasert S (2020) Age-related changes in the gut microbiota and the core gut microbiome of healthy Thai humans. 3 Biotech 10:276. https://doi.org/10.1007/s13205-020-02265-7

    Article  PubMed  PubMed Central  Google Scholar 

  37. Khan M, Mathew BJ, Gupta P, Garg G, Khadanga S, Vyas AK et al (2021) Gut dysbiosis and IL-21 responsein patients with severe COVID-19. Microorganisms 9:1292. https://doi.org/10.3390/microorganisms9061292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Khan M, Sori N (2022) Diet-gut microbiota-brain axis and IgE-mediated food allergy. In: Sayyed RZ, Khan M (eds) Microbiome-gut-brain axis: implications on health. Springer, Singapore, pp 153–168. https://doi.org/10.1007/978-981-16-1626-6_6

    Chapter  Google Scholar 

  39. Bonaz B, Bazin T, Pellissier S (2018) The vagus nerve at the interface of the microbiota-gut-brain axis. Front Neurosci 12:49. https://doi.org/10.3389/fnins.2018.00049

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kuwahara A, Matsuda K, Kuwahara Y, Asano S, Inui T, Marunaka Y (2020) Microbiota-gut-brain axis: enteroendocrine cells and the enteric nervous system form an interface between the microbiota and the central nervous system. Biomed Res 41:199–216. https://doi.org/10.2220/biomedres.41.199

    Article  CAS  PubMed  Google Scholar 

  41. Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M et al (2019) The microbiota-gut-brain axis. Physiol Revn 99:1877–2013. https://doi.org/10.1152/physrev.00018.2018

    Article  CAS  Google Scholar 

  42. Colucci-D’Amato L, Speranza L, Volpicelli F (2020) Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. Int J Mol Sc 21:7777. https://doi.org/10.3390/ijms21207777

    Article  CAS  Google Scholar 

  43. Sun Q, Cheng L, Zeng X, Zhang X, Wu Z, Weng P (2020) The modulatory effect of plant polysaccharides on gut flora and the implication for neurodegenerative diseases from the perspective of the microbiota-gut-brain axis. Int J Biol Macromol 164:1484–1492. https://doi.org/10.1016/j.ijbiomac.2020.07.208

    Article  CAS  PubMed  Google Scholar 

  44. Sundman MH, Chen N, Subbian V, Chou Y (2017) The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain Behav Immun 66:31–44. https://doi.org/10.1016/j.bbi.2017.05.009

    Article  CAS  PubMed  Google Scholar 

  45. Wan X, Zhang K, Ramkumar S, Deny J, Emayavaramban G, Ramkumar MS et al (2019) A review on electroencephalogram-based brain computer interface for elderly disabled. IEEE 7:36380–36387. https://doi.org/10.1109/ACCESS.2019.2903235

    Article  Google Scholar 

  46. Houlden A, Goldrick M, Brough D, Vizi ES, Lénárt N, Martinecz B et al (2016) Brain injury induces specific changes in the cecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behave Immun 57:10–20. https://doi.org/10.1016/j.bbi.2016.04.003

    Article  CAS  Google Scholar 

  47. Leo EEM, Campos MRS (2020) Effect of ultra-processed diet on gut microbiota and thus its role in neurodegenerative diseases. Nutrition 71:110609. https://doi.org/10.1016/j.nut.2019.110609

    Article  Google Scholar 

  48. Makki K, Deehan EC, Walter J, Bäckhed F (2018) The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23:705–715. https://doi.org/10.1016/j.chom.2018.05.012

    Article  CAS  PubMed  Google Scholar 

  49. Mardinoglu A, Wu H, Bjornson E, Zhang C, Hakkarainen A, Räsänen SM et al (2018) An integrated understanding of the rapid metabolic benefits of a carbohydrate-restricted diet on hepatic steatosis in humans. Cell Metab 27:559–571. https://doi.org/10.1016/j.cmet.2018.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Singh RK, Chang H-W, Yan D, Lee KM, Ucmak D, Wong K et al (2017) Influence of diet on the gut microbiome and implications for human health. J Transl Med 15:73. https://doi.org/10.1186/s12967-017-1175-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sakkas H, Bozidis P, Touzios C, Kolios D, Athanasiou G, Athanasopoulou E et al (2020) Nutritional status and the influence of the vegan diet on the gut microbiota and human health. Medicina 56:88. https://doi.org/10.3390/medicina56020088

    Article  PubMed  PubMed Central  Google Scholar 

  52. Liu S, Gao J, Zhu M, Liu K, Zhang H-L (2020) Gut microbiota and dysbiosis in Alzheimer’s disease: implications for pathogenesis and treatment. Mol Neurobiol 57:5026–5043. https://doi.org/10.1007/s12035-020-02073-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mills S, Stanton C, Lane JA, Smith GJ, Ross RP (2019) Precision nutrition and the microbiome, part I: current state of the science. Nutrients 11:923. https://doi.org/10.3390/nu11040923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Khan M, Nakkeeran E, Umesh-Kumar S (2013) Potential application of pectinase in developing functional foods. Annu Rev Food Sci Technol 4:21–34. https://doi.org/10.1146/annurev-food-030212-182525

    Article  CAS  PubMed  Google Scholar 

  55. Tomova A, Bukovsky I, Rembert E, Yonas W, Alwarith J, Barnard ND et al (2019) The effects of vegetarian and vegan diets on gut microbiota. Front Nutri 6:47. https://doi.org/10.3389/fnut.2019.00047

    Article  CAS  Google Scholar 

  56. Renaud J, Martinoli M-G (2019) Considerations for the use of polyphenols as therapies in neurodegenerative diseases. Int J Mol Sci 20:1883. https://doi.org/10.3390/ijms20081883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ravi SK, Narasingappa RB, Vincent B (2019) Neuro-nutrients as anti-alzheimer’s disease agents: a critical review. Crit Rev Food Sci Nutr 59:2999–3018. https://doi.org/10.1080/10408398.2018.1481012

    Article  CAS  PubMed  Google Scholar 

  58. Di Meo F, Valentino A, Petillo O, Peluso G, Filosa S, Crispi S (2020) Bioactive polyphenols and neuromodulation: molecular mechanisms in neurodegeneration. Int J Mol Sci 21:2564. https://doi.org/10.3390/ijms21072564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ma G, Chen Y (2020) Polyphenol supplementation benefits human health via gut microbiota: a systematic review via meta-analysis. J Funct Foods 66:103829. https://doi.org/10.1016/j.jff.2020.103829

    Article  CAS  Google Scholar 

  60. Kelainy EG, Ibrahim Laila IM, Ibrahim SR (2019) The effect of ferulic acid against lead-induced oxidative stress and DNA damage in kidney and testes of rats. Environ Sci Pollut Res 26:31675–31684. https://doi.org/10.1007/s11356-019-06099-6

    Article  CAS  Google Scholar 

  61. Nash V, Ranadheera CS, Georgousopoulou EN, Mellor DD, Panagiotakos DB, McKune AJ et al (2018) The effects of grape and red wine polyphenols on gut microbiota – A systematic review. Int Food Res J 113:277–287. https://doi.org/10.1016/j.foodres.2018.07.019

    Article  CAS  Google Scholar 

  62. Dall’Asta M, Calani L, Tedeschi M, Jechiu L, Brighenti F, Del Rio D, (2012) Identification of microbial metabolites derived from in vitro fecal fermentation of different polyphenolic food sources. Nutrition 28:197–203. https://doi.org/10.1016/j.nut.2011.06.005

    Article  CAS  PubMed  Google Scholar 

  63. Grondin JM, Tamura K, Déjean G, Abbott DW, Brumer H (2017) Polysaccharide utilisation loci: fueling microbial communities. J Bacteriol 199:e00860-e916. https://doi.org/10.1128/JB.00860-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Krizsan SJ, Pang D, Fatehi F, Rinne M, Huhtanen P (2020) Metabolisable energy of grass and red clover silages fed to sheep at maintenance level. Animal 14:753–762. https://doi.org/10.1017/S1751731119002556

    Article  CAS  PubMed  Google Scholar 

  65. Nishizawa C, Ohta T, Egashira Y, Sanada H (1998) Ferulic acid esterase activities of typical intestinal bacteria. Food Sci Technol Int, Tokyo 194:94–97. https://doi.org/10.3136/fsti9596t9798.4.94

    Article  Google Scholar 

  66. Mogodiniyai Kasmaei K, Sundh J (2019) Identification of novel putative bacterial feruloyl esterases from anaerobic ecosystems by use of whole-genome shotgun metagenomics and genome binning. Front Microbiol 10:2673. https://doi.org/10.3389/fmicb.2019.02673

    Article  PubMed  PubMed Central  Google Scholar 

  67. Awika JM, Rose DJ, Simsek S (2018) Complementary effects of cereal and pulse polyphenols and dietary fiber on chronic inflammation and gut health. Food Funct 9:1389–13409. https://doi.org/10.1039/C7FO02011B

    Article  CAS  PubMed  Google Scholar 

  68. Mendez-Encinas MA, Carvajal-Millan E, Rascon-Chu A, Astiazaran-Garcia HF, Valencia-Rivera DE (2018) Ferulated arabinoxylans and their gels: functional properties and potential application as antioxidant and anticancer agent. Oxid Med Cell Longev 2018:e2314759. https://doi.org/10.1155/2018/2314759

    Article  CAS  Google Scholar 

  69. Gong L, Wang H, Wang T, Liu Y, Wang J, Sun B (2019) Feruloylated oligosaccharides modulate the gut microbiota in vitro via the combined actions of oligosaccharides and ferulic acid. J Funct Foods 60:103453. https://doi.org/10.1016/j.jff.2019.103453

    Article  CAS  Google Scholar 

  70. Al-Khafaji AH, Jepsen SD, Christensen KR, Vigsnæs LK (2020) The potential of human milk oligosaccharides to impact the microbiota-gut-brain axis through modulation of the gut microbiota. J Funct Foods 74:104176. https://doi.org/10.1016/j.jff.2020.104176

    Article  CAS  Google Scholar 

  71. Raveendran S, Parameswaran B, Beevi Ummalyma S, Abraham A, Kuruvilla Mathew A, Madhavan A et al (2018) Applications of microbial enzymes in food Industry. Food Technol Biotechnol 56:16–30. https://doi.org/10.17113/ftb.56.01.18.5491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wong DW, Chan VJ, Liao H (2019) Metagenomic discovery of feruloyl esterases from rumen microflora. Appl Microbiol Biotechnol 103:8449–8457. https://doi.org/10.1007/s00253-019-10102-y

    Article  CAS  PubMed  Google Scholar 

  73. Chen M, Liu S, Imam KM, Uddin S, Sun L, Wang Y et al (2020) The effect of xylooligosaccharide, xylan, and whole wheat bran on the human gut bacteria. Front Microbiol 11:2936. https://doi.org/10.3389/fmicb.2020.568457

    Article  Google Scholar 

  74. Kovatcheva-Datchary P, Shoaie S, Lee S, Wahlström A, Nookaew I, Hallen A et al (2019) Simplified intestinal microbiota to study microbe-diet-host interactions in a mouse model. Cell Rep 26:3772–3783. https://doi.org/10.1016/j.celrep.2019.02.090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pereira GV, Abdel-Hamid AM, Dutta S, D’Alessandro-Gabazza CN, Wefers D, Farris JA et al (2021) Degradation of complex arabinoxylans by human colonic Bacteroidetes. Nat Commun 12:459. https://doi.org/10.1038/s41467-020-20737-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hameleers L, Penttinen L, Ikonen M, Jaillot L, Fauré R, Terrapon N et al (2021) Polysaccharide utilisation loci-driven enzyme discovery reveals BD-FAE: a bifunctional feruloyl and acetyl xylan esterase active on complex natural xylans. Biotechnol Biofuels 14:127. https://doi.org/10.1186/s13068-021-01976-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang K, Pereira GV, Cavalcante JJV, Zhang M, Mackie R, Cann I (2016) Bacteroides intestinalis DSM 17393, a member of the human colonic microbiome, upregulates multiple endoxylanases during growth on xylan. Sci Rep 6:34360. https://doi.org/10.1038/srep34360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fehlner-Peach H, Magnabosco C, Raghavan V, Scher JU, Tett A, Cox LM et al (2019) Distinct polysaccharide utilisation profiles of human intestinal Prevotella copri isolates. Cell Host Microbe 26:680–690. https://doi.org/10.1016/j.chom.2019.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dimarogona M, Topakas E, Christakopoulos P, Chrysina ED (2020) The crystal structure of a Fusarium oxysporum feruloyl esterase that belongs to the tannase family. FEBS Lett 594:1738–1749. https://doi.org/10.1002/1873-3468.13776

    Article  CAS  PubMed  Google Scholar 

  80. Wang X, Geng X, Egashira Y, Sanada H (2004) Purification and characterization of a feruloyl esterase from the intestinal bacterium Lactobacillus acidophilus. Appl Environ Microbiol 70:2367–2372. https://doi.org/10.1128/AEM.70.4.2367-2372.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Su R, Ni K, Wang T, Yang X, Zhang J, Liu Y et al (2019) Effects of ferulic acid esterase-producing Lactobacillus fermentum and cellulase additives on the fermentation quality and microbial community of alfalfa silage. PeerJ 7:e7712. https://doi.org/10.7717/peerj.7712

    Article  PubMed  PubMed Central  Google Scholar 

  82. Nieter A, Kelle S, Linke D, Berger RG (2017) A p-coumaroyl esterase from Rhizoctonia solani with a pronounced chlorogenic acid esterase activity. New Biotechnol 37:153–161. https://doi.org/10.1016/j.nbt.2017.01.002

    Article  CAS  Google Scholar 

  83. Kmezik C, Mazurkewich S, Meents T, McKee LS, Idström A, Armeni M et al (2021) A polysaccharide utilisation locus from the gut bacterium Dysgonomonas mossii encodes functionally distinct carbohydrate esterases. J Biol Chem. https://doi.org/10.1016/j.jbc.2021.100500

    Article  PubMed  PubMed Central  Google Scholar 

  84. Dilokpimol A, Mäkelä MR, Aguilar-Pontes MV, Benoit-Gelber I, Hildén KS, de Vries RP (2016) Diversity of fungal feruloyl esterases: updated phylogenetic classification, properties, and industrial applications. Biotechnol Biofuels 9:231. https://doi.org/10.1186/s13068-016-0651-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Underlin EN, Frommhagen M, Dilokpimol A, van Erven G, de Vries RP, Kabel MA (2020) Feruloyl esterases for biorefineries: subfamily classified specificity for natural substrates. Front Bioeng Biotechnol 8:332. https://doi.org/10.3389/fbioe.2020.00332

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hunt CJ, Antonopoulou I, Tanksale A, Rova U, Christakopoulos P, Haritos VS (2017) Insights into substrate binding of ferulic acid esterases by arabinose and methyl hydroxycinnamate esters and molecular docking. Sci Rep 7:17315. https://doi.org/10.1038/s41598-017-17260-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dilokpimol A, Mäkelä MR, Mansouri S, Belova O, Waterstraat M, Bunzel M et al (2017) Expanding the feruloyl esterase gene family of Aspergillus niger by characterization of a feruloyl esterase, FaeC. New Biotechnol 37:200–209. https://doi.org/10.1016/j.nbt.2017.02.007

    Article  CAS  Google Scholar 

  88. Ohlhoff CW, Kirby BM, Van Zyl L, Mutepfa DLR, Casanueva A, Huddy RJ et al (2015) An unusual feruloyl esterase belonging to family VIII esterases and displaying a broad substrate range. J Mol Catal B Enzymatic 118:79–88. https://doi.org/10.1016/j.molcatb.2015.04.010

    Article  CAS  Google Scholar 

  89. Gruninger RJ, Cote C, McAllister TA, Abbott DW (2016) Contributions of a unique β-clamp to substrate recognition illuminates the molecular basis of exolysis in ferulic acid esterases. Biochem J 473:839–849. https://doi.org/10.1042/BJ20151153

    Article  CAS  PubMed  Google Scholar 

  90. Uraji M, Tamura H, Mizohata E, Arima J, Wan K, Ogawa K et al (2017) Loop of Streptomyces feruloyl esterase plays an important role in the enzyme’s catalyzing the release of ferulic acid from biomass. Appl Environ Microbiol 84:e02300-e2317. https://doi.org/10.1128/AEM.02300-17

    Article  Google Scholar 

  91. Kaur H, Lekhak MM, Chahal S, Goutam U, Jha P, Naidoo D, Ochatt SJ, Kumar V (2020) Nardostachys jatamansi (D.Don) DC.: an invaluable and constantly dwindling resource of the Himalayas. S Afr J Bot 135:252–267. https://doi.org/10.1016/j.sajb.2020.08.010

    Article  CAS  Google Scholar 

  92. Kaur S, Dhiman M, Mantha AK (2018) Ferulic Acid: A natural antioxidant with application towards neuroprotection against Alzheimer’s disease. In: Rani V, Yadav UCS (eds) Functional food and human health. Springer, Singapore, pp 575–586. https://doi.org/10.1007/978-981-13-1123-9_25

    Chapter  Google Scholar 

  93. Pavelyev RS, Bondar OV, Nguyen TNT, Ziganshina AA, Al Farroukh M, Karwt R et al (2018) Synthesis and in vitro antitumor activity of novel alkenyl derivatives of pyridoxine, bioisosteric analogs of feruloyl methane. Bioorg Med Chem 26:5824–5837. https://doi.org/10.1016/j.bmc.2018.10.031

    Article  CAS  PubMed  Google Scholar 

  94. Andrade S, Ramalho MJ, Loureiro JA, Pereira MC (2021) The biophysical interaction of ferulic acid with liposomes as biological membrane model: The effect of the lipid bilayer composition. J Mol Liq 324:114689. https://doi.org/10.1016/j.molliq.2020.114689

    Article  CAS  Google Scholar 

  95. Salau VF, Erukainure OL, Ibeji CU, Olasehinde TA, Koorbanally NA, Islam MdS (2020) Ferulic acid modulates dysfunctional metabolic pathways and purinergic activities, while stalling redox imbalance and cholinergic activities in oxidative brain injury. Neurotox Res 37:944–955. https://doi.org/10.1007/s12640-019-00099-7

    Article  CAS  PubMed  Google Scholar 

  96. Zduńska K, Dana A, Kolodziejczak A, Rotsztejn H (2018) Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol Physiol 31:332–336. https://doi.org/10.1159/000491755

    Article  CAS  PubMed  Google Scholar 

  97. Mohamed MK, Ramamurthy V (2021) The modulating effect of ferulic acid on high fat diet induced hyperlipidemia and obesity: a dose response study in male Sprague Dawley rats. Biomedicine 41:413–420. https://doi.org/10.51248/.v41i2.1049

    Article  Google Scholar 

  98. Di Giacomo S, Percaccio E, Gullì M, Romano A, Vitalone A, Mazzanti G, Gaetani S, Di Sotto A (2022) Recent advances in the neuroprotective properties of ferulic acid in Alzheimer’s disease: a narrative review. Nutrients 14:3709. https://doi.org/10.3390/nu14183709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cheng C-Y, Tang N-Y, Kao S-T, Hsieh C-L (2016) Ferulic acid administered at various time points protects against cerebral infarction by activating p38 MAPK/p90RSK/CREB/Bcl-2 anti-apoptotic signaling in the subacute phase of cerebral ischemia-reperfusion injury in rats. PLoS ONE 11:e0155748. https://doi.org/10.1371/journal.pone.0155748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Westfall S, Lomis N, Kahouli I, Dia SY, Singh SP, Prakash S (2017) Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell Mol Life Sci 74:3769–3787. https://doi.org/10.1007/s00018-017-2550-9

    Article  CAS  PubMed  Google Scholar 

  101. Tan LY, Yeo XY, Bae H-G, Lee DPS, Ho RC, Kim JE, Jo D-G, Jung S (2021) Association of gut microbiome dysbiosis with neurodegeneration: can gut microbe-modifying diet prevent or alleviate the symptoms of neurodegenerative diseases? Life 11:698. https://doi.org/10.3390/life11070698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Singh N, Singh V, Rai SN, Mishra V, Vamanu E, Singh MP (2022) Deciphering the gut microbiome in neurodegenerative diseases and metagenomic approaches for characterization of gut microbes. Biomed Pharmacother 156:113958. https://doi.org/10.1016/j.biopha.2022.113958

    Article  CAS  PubMed  Google Scholar 

  103. Denver P, McClean PL (2018) Distinguishing normal brain aging from the development of Alzheimer’s disease: inflammation, insulin signaling and cognition. Neural Regen Res 13:1719–1730. https://doi.org/10.4103/1673-5374.238608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Repsold BP, Malan SF, Joubert J, Oliver DW (2018) Multi-targeted directed ligands for Alzheimer’s disease: design of novel lead coumarin conjugates. SAR QSAR Environ Res 29:231–255. https://doi.org/10.1080/1062936X.2018.1423641

    Article  CAS  PubMed  Google Scholar 

  105. Mishra P, Kumar A, Panda G (2019) Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer’s disease (1998–2018). Bioorg Med Chem 27:895–930. https://doi.org/10.1016/j.bmc.2019.01.025

    Article  CAS  PubMed  Google Scholar 

  106. He F, Chou CJ, Scheiner M, Poeta E, Yuan Chen N, Gunesch S et al (2021) Melatonin-and ferulic acid-based HDAC6 selective inhibitors exhibit pronounced immunomodulatory effects in vitro and neuroprotective effects in a pharmacological Alzheimer’s disease mouse model. J Med Chem 64:3794–3812. https://doi.org/10.1021/acs.jmedchem.0c01940

    Article  CAS  PubMed  Google Scholar 

  107. Sang Z, Wang K, Han X, Cao M, Tan Z, Liu W (2018) Design, synthesis, and evaluation of novel ferulic acid derivatives as multi-target-directed ligands for the treatment of Alzheimer’s disease. ACS Chem Neurosci 10:1008–1024. https://doi.org/10.1021/acschemneuro.8b00530

    Article  CAS  Google Scholar 

  108. Xu W, Wang X-B, Wang Z-M, Wu J-J, Li F, Wang J et al (2016) Synthesis and evaluation of donepezil–ferulic acid hybrids as multi-target-directed ligands against Alzheimer’s disease. Med Chem Commun 7:990–998. https://doi.org/10.1039/C6MD00053C

    Article  CAS  Google Scholar 

  109. Zhang X, He X, Chen Q, Lu J, Rapposelli S, Pi R (2018) A review on the hybrids of hydroxycinnamic acid as multi-target-directed ligands against Alzheimer’s disease. Bioorg Med Chem 26:543–550. https://doi.org/10.1016/j.bmc.2017.12.042

    Article  CAS  PubMed  Google Scholar 

  110. Dohrmann DD, Putnik P, Bursać Kovačević D, Simal-Gandara J, Lorenzo JM, Barba FJ (2019) Japanese, Mediterranean and Argentinean diets and their potential roles in neurodegenerative diseases. Int Food Res J 120:464–477. https://doi.org/10.1016/j.foodres.2018.10.090

    Article  CAS  Google Scholar 

  111. Hornedo-Ortega R, Cerezo AB, de Pablos RM, Krisa S, Richard T, García-Parrilla MC et al (2018) Phenolic compounds characteristic of the Mediterranean diet in mitigating microglia-mediated neuroinflammation. Front Cell Neurosci 12:373. https://doi.org/10.1007/978-981-13-1123-9_25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Weng M, Xie X, Liu C, Lim K-L, Zhang C-W, Li L (2018) The sources of reactive oxygen species and its possible role in the pathogenesis of Parkinson’s disease. Parkinsons Dis 2018:9163040. https://doi.org/10.1155/2018/9163040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Anis E, Zafeer MF, Firdaus F, Islam SN, Anees Khan A, Ali A et al (2020) Ferulic acid reinstates mitochondrial dynamics through PGC1α expression modulation in 6-hydroxydopamine lesioned rats. Phytother Res 34:214–226. https://doi.org/10.1002/ptr.6523

    Article  CAS  PubMed  Google Scholar 

  114. Ojha S, Javed H, Azimullah S, Khair SBA, Haque ME (2015) Neuroprotective potential of ferulic acid in the rotenone model of Parkinson’s disease. Drug Des Devel Ther 9:5499. https://doi.org/10.2147/DDDT.S90616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cui L, Zhang Y, Cao H, Wang Y, Teng T, Ma G, Li Y, Li K, Zhang Y (2013) Ferulic acid inhibits the transition of amyloid-β 42 monomers to oligomers but accelerates the transition from oligomers to fibrils. J Alzheimers Dis 37:19–28. https://doi.org/10.3233/JAD-130164

    Article  CAS  PubMed  Google Scholar 

  116. Dong Q, Yang S, Liao H, He Q, Xiao J (2023) Bioinformatics findings reveal the pharmacological properties of ferulic acid treating traumatic brain injury via targeting of ferroptosis. Int J Food Prop 26:778–786. https://doi.org/10.1080/10942912.2023.2185178

    Article  CAS  Google Scholar 

  117. Ono K, Hirohata M, Yamada M (2005) Ferulic acid destabilizes preformed β-amyloid fibrils in vitro. BBRC 336:444–449. https://doi.org/10.1016/j.bbrc.2005.08.148

    Article  CAS  PubMed  Google Scholar 

  118. Sultana R, Ravagna A, Mohmmad-Abdul H, Calabrese V, Butterfield DA (2005) Ferulic acid ethyl ester protects neurons against amyloid β- peptide(1–42)-induced oxidative stress and neurotoxicity: relationship to antioxidant activity. J Neurochem 92:749–758. https://doi.org/10.1111/j.1471-4159.2004.02899.x

    Article  CAS  PubMed  Google Scholar 

  119. Takahashi R, Ono K, Takamura Y, Mizuguchi M, Ikeda T, Nishijo H, Yamada M (2015) Phenolic compounds prevent the oligomerization of α-synuclein and reduce synaptic toxicity. J Neurochem 134:943–955. https://doi.org/10.1111/jnc.13180

    Article  CAS  PubMed  Google Scholar 

  120. Li X, Zhang J, Rong H, Zhang X, Dong M (2020) Ferulic acid ameliorates MPP+/MPTP-induced oxidative stress via ERK1/2-dependent Nrf2 activation: translational implications for Parkinson disease treatment. Mol Neurobiol 57:2981–2995. https://doi.org/10.1007/s12035-020-01934-1

    Article  CAS  PubMed  Google Scholar 

  121. Kim H-S, Cho J, Kim D-H, Yan J-J, Lee H-K, Suh H-W, Song D-K (2004) Inhibitory effects of long-term administration of ferulic acid on microglial activation induced by intracerebroventricular injection of β-amyloid peptide (1–42) in mice. Biol Pharm Bull 27:120–121. https://doi.org/10.1248/bpb.27.120

    Article  CAS  PubMed  Google Scholar 

  122. Yan J-J, Cho J-Y, Kim H-S, Kim K-L, Jung J-S, Huh S-O, Suh H-W, Kim Y-H, Song D-K (2001) Protection against β-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. Br J Pharmacol 133:89–96. https://doi.org/10.1038/sj.bjp.0704047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jin Y, Yan E, Fan Y, Zong Z, Qi Z, Li Z (2005) Sodium ferulate prevents amyloid-beta-induced neurotoxicity through suppression of p38 MAPK and upregulation of ERK-1/2 and Akt/protein kinase B in rat hippocampus. Acta Pharmacol Sin 26:943–951. https://doi.org/10.1111/j.1745-7254.2005.00158.x

    Article  CAS  PubMed  Google Scholar 

  124. Hussein AM, Abbas KM, Abulseoud OA, El-Hussainy E-HMA (2017) Effects of ferulic acid on oxidative stress, heat shock protein 70, connexin 43, and monoamines in the hippocampus of pentylenetetrazole-kindled rats. Can J Physiol Pharmacol 95:732–742. https://doi.org/10.1139/cjpp-2016-0219

    Article  CAS  PubMed  Google Scholar 

  125. Mori T, Koyama N, Tan J, Segawa T, Maeda M, Town T (2019) Combined treatment with the phenolics (−)-epigallocatechin-3-gallate and ferulic acid improves cognition and reduces Alzheimer-like pathology in mice. J Biol Chem 294:2714–5444. https://doi.org/10.1074/jbc.RA118.004280

    Article  CAS  PubMed  Google Scholar 

  126. Nagarajan S, Chellappan DR, Chinnaswamy P, Thulasingam S (2015) Ferulic acid pretreatment mitigates MPTP-induced motor impairment and histopathological alterations in C57BL/6 mice. Pharm Biol 53:1591–1601. https://doi.org/10.3109/13880209.2014.993041

    Article  CAS  PubMed  Google Scholar 

  127. Askar MH, Hussein AM, Al-Basiony SF, Meseha RK, Metias EF, Salama MM et al (2019) Effects of exercise and ferulic acid on alpha synuclein and neuroprotective heat shock protein 70 in an experimental model of Parkinsonism disease. CNS Neurol Disord Drug Targets 18:156–169. https://doi.org/10.2174/1871527317666180816095707

    Article  CAS  PubMed  Google Scholar 

  128. Zeni ALB, Camargo A, Dalmagro AP (2017) Ferulic acid reverses depression-like behavior and oxidative stress induced by chronic corticosterone treatment in mice. Steroids 125:131–136. https://doi.org/10.1016/j.steroids.2017.07.006

    Article  CAS  PubMed  Google Scholar 

  129. Yao K, Yang Q, Li Y, Lan T, Yu H, Yu Y (2020) MicroRNA-9 mediated the protective effect of ferulic acid on hypoxic-ischemic brain damage in neonatal rats. PLoS ONE 15:e0228825. https://doi.org/10.1371/journal.pone.0228825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Long T, Wu Q, Wei J, Tang Y, He Y-N, He C-L, Chen X, Yu L, Yu C-L, Law BY-K, Wu J-M, Qin D-L, Wu A-G, Zhou X-G (2022) Ferulic acid exerts neuroprotective effects via autophagy induction in C. elegans and cellular models of Parkinson’s disease. Oxid Med Cell Longev 2022:e3723567. https://doi.org/10.1155/2022/3723567

    Article  CAS  Google Scholar 

  131. Ordovas JM, Ferguson LR, Tai ES, Mathers JC (2018) Personalised nutrition and health. BMJ. https://doi.org/10.1136/bmj.k2173

    Article  PubMed  PubMed Central  Google Scholar 

  132. Berry SE, Valdes AM, Drew DA, Asnicar F, Mazidi M, Wolf J et al (2020) Human postprandial responses to food and potential for precision nutrition. Nat Med 26:964–973. https://doi.org/10.1038/s41591-020-0934-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sheridan OP, Martin JC, Lawley TD, Browne HP, Harris HMB, Bernalier-Donadille A et al (2016) Polysaccharide utilisation loci and nutritional specialization in a dominant group of butyrate-producing human colonic Firmicutes. Microb Genom 2:e000043. https://doi.org/10.1099/mgen.0.000043

    Article  Google Scholar 

  134. Kohno M, Musashi K, Ikeda HO, Horibe T, Matsumoto A, Kawakami K (2020) Oral administration of ferulic acid or ethyl ferulate attenuates retinal damage in sodium iodate-induced retinal degeneration mice. Sci Rep 10:8688. https://doi.org/10.1038/s41598-020-65673-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank CSIR-Central Food Technological Research Institute (CFTRI) for providing research facilities. Saarika Pothuvan Kunnummal acknowledges CSIR-Senior Research Fellowship and Mahejibin Khan acknowledges the Indian Council of Medical Research (ICMR) for providing a research grant.

Funding

Funding was received from the Indian Council of Medical Research (ICMR) as a research grant (ICMR Grant no. 5/7/1741/CH/Adhoc/2021-RMBCH).

Author information

Authors and Affiliations

Authors

Contributions

MK conceptualised the review, SPK performed the literature search and data analysis, wrote the first draft and all the authors drafted and/or critically revised the manuscript.

Corresponding author

Correspondence to Mahejibin Khan.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Human and animal rights and informed consent

This article contains no studies with human or animal subjects performed by the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunnummal, S.P., Khan, M. Diet–gut microbiome interaction and ferulic acid bioavailability: implications on neurodegenerative disorders. Eur J Nutr 63, 51–66 (2024). https://doi.org/10.1007/s00394-023-03247-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-023-03247-0

Keywords

Navigation