Skip to main content
Log in

Relative validity of the Planetary Health Diet Index by comparison with usual nutrient intakes, plasma food consumption biomarkers, and adherence to the Mediterranean diet among European adolescents: the HELENA study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The EAT-Lancet Commission proposed an evidence-based global reference diet to improve human health within planetary boundaries. Recently, the Planetary Health Diet Index (PHDI) was developed based on the EAT-Lancet recommendations and validated among Brazilian adults. However, the relative validity of the PHDI in adolescents has yet to be assessed. Thus, we aimed to evaluate the relative validity of the PHDI in European adolescents.

Methods

We used cross-sectional data from 1804 adolescents (12.5–17.5 years) enrolled in the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study. The PHDI (0–150 points) was calculated based on dietary intake data from two non-consecutive 24-h dietary recalls. Associations between the PHDI and usual nutrient intakes, plasma food consumption biomarkers, and adherence to the Mediterranean diet were evaluated using multivariable-adjusted mixed-effects linear regression models.

Results

Higher PHDI score was associated with greater intakes of nutrients predominantly from plant-source foods, such as vegetable protein, vitamin E, and folate and with lower intake of nutrients predominately from animal-source foods, such as total and saturated fat, cholesterol, and animal protein. Furthermore, a higher PHDI score was also positively associated with plasma β-carotene, vitamin C, vitamin D, folate, and ferritin concentrations, while negatively associated with trans-fatty acids concentration. Moreover, higher PHDI was related to a greater adherence to the Mediterranean dietary pattern.

Conclusions

The PHDI showed good relative validity among adolescents in the HELENA study. Hence, future research should assess adherence to the PHDI and long-term health outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The analytic code of the PHDI computation will be made available upon request pending to the corresponding author.

References

  1. Tilman D, Clark M (2014) Global diets link environmental sustainability and human health. Nature 515:518–522. https://doi.org/10.1038/nature13959

    Article  CAS  PubMed  Google Scholar 

  2. Willett W, Rockström J, Loken B et al (2019) Food in the anthropocene: the EAT–Lancet commission on healthy diets from sustainable food systems. Lancet 393:447–492. https://doi.org/10.1016/S0140-6736(18)31788-4

    Article  PubMed  Google Scholar 

  3. Afshin A, Sur PJ, Fay KA et al (2019) Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet 393:1958–1972. https://doi.org/10.1016/S0140-6736(19)30041-8

    Article  Google Scholar 

  4. Wang DD, Li Y, Afshin A et al (2019) Global improvement in dietary quality could lead to substantial reduction in premature death. J Nutr 149:1065–1074. https://doi.org/10.1093/jn/nxz010

    Article  PubMed  PubMed Central  Google Scholar 

  5. Laine JE, Huybrechts I, Gunter MJ et al (2021) Co-benefits from sustainable dietary shifts for population and environmental health: an assessment from a large European cohort study. Lancet Planet Health 5:e786–e796. https://doi.org/10.1016/S2542-5196(21)00250-3

    Article  PubMed  PubMed Central  Google Scholar 

  6. Springmann M, Wiebe K, Mason-D’Croz D et al (2018) Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet Health 2:e451–e461. https://doi.org/10.1016/S2542-5196(18)30206-7

    Article  PubMed  PubMed Central  Google Scholar 

  7. Springmann M, Spajic L, Clark MA et al (2020) The healthiness and sustainability of national and global food based dietary guidelines: modelling study. BMJ 370:m2322. https://doi.org/10.1136/bmj.m2322

    Article  PubMed  PubMed Central  Google Scholar 

  8. Food and Agriculture Organization of the United Nations and World Health Organization (2019) Sustainable healthy diets: guiding principles. WHO, Rome

    Google Scholar 

  9. Springmann M, Afshin A, Rivera JA et al (2020) The benefits of the EAT-Lancet commission’s dietary recommendations are significant and robust. J Nutr 150:2837–2838. https://doi.org/10.1093/jn/nxaa257

    Article  PubMed  Google Scholar 

  10. Zagmutt FJ, Pouzou JG, Costard S (2020) The EAT-Lancet commission’s dietary composition may not prevent non-communicable disease mortality. J Nutr 150:985–988. https://doi.org/10.1093/jn/nxaa020

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lassen AD, Christensen LM, Trolle E (2020) Development of a Danish adapted healthy plant-based diet based on the EAT-Lancet reference diet. Nutrients 12:738. https://doi.org/10.3390/nu12030738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tucci M, Martini D, del Bo’ C et al (2021) An Italian-Mediterranean Dietary pattern developed based on the EAT-Lancet reference diet (EAT-IT): a nutritional evaluation. Foods 10:558. https://doi.org/10.3390/foods10030558

    Article  PubMed  PubMed Central  Google Scholar 

  13. Castellanos-Gutiérrez A, Sánchez-Pimienta TG, Batis C et al (2021) Toward a healthy and sustainable diet in Mexico: where are we and how can we move forward? Am J Clin Nutr 113:1177–1184. https://doi.org/10.1093/ajcn/nqaa411

    Article  PubMed  Google Scholar 

  14. Blackstone NT, Conrad Z (2020) Comparing the recommended eating patterns of the EAT-Lancet commission and dietary guidelines for Americans: implications for sustainable nutrition. Curr Dev Nutr 4:nzaa15. https://doi.org/10.1093/cdn/nzaa015

    Article  Google Scholar 

  15. Drewnowski A (2020) Analysing the affordability of the EAT–Lancet diet. Lancet Glob Health 8:e6–e7. https://doi.org/10.1016/S2214-109X(19)30502-9

    Article  PubMed  Google Scholar 

  16. Hirvonen K, Bai Y, Headey D, Masters WA (2020) Affordability of the EAT–Lancet reference diet: a global analysis. Lancet Glob Health 8:e59–e66. https://doi.org/10.1016/S2214-109X(19)30447-4

    Article  PubMed  Google Scholar 

  17. Ocké MC (2013) Evaluation of methodologies for assessing the overall diet: dietary quality scores and dietary pattern analysis. Proc Nutr Soc 72:191–199. https://doi.org/10.1017/S0029665113000013

    Article  PubMed  Google Scholar 

  18. Fransen HP, Ocké MC (2008) Indices of diet quality. Curr Opin Clin Nutr Metab Care 11:559–565. https://doi.org/10.1097/MCO.0b013e32830a49db

    Article  PubMed  Google Scholar 

  19. Waijers PMCM, Feskens EJM, Ocké MC (2007) A critical review of predefined diet quality scores. Br J Nutr 97:219–231. https://doi.org/10.1017/S0007114507250421

    Article  CAS  PubMed  Google Scholar 

  20. Cacau LT, De Carli E, de Carvalho AM et al (2021) Development and validation of an index based on EAT-Lancet recommendations: the planetary health diet index. Nutrients 13:1698. https://doi.org/10.3390/nu13051698

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cacau LT, Marchioni DM (2022) The planetary health diet index scores proportionally and considers the intermediate values of the EAT-Lancet reference diet. Am J Clin Nutr 115:1237. https://doi.org/10.1093/ajcn/nqac006

    Article  PubMed  Google Scholar 

  22. Cacau LT, Benseñor IM, Goulart AC et al (2023) Adherence to the EAT-Lancet sustainable reference diet and cardiometabolic risk profile: cross-sectional results from the ELSA-Brasil cohort study. Eur J Nutr 62:807–817. https://doi.org/10.1007/s00394-022-03032-5

    Article  CAS  PubMed  Google Scholar 

  23. Cacau LT, Benseñor IM, Goulart AC et al (2021) Adherence to the planetary health diet index and obesity indicators in the Brazilian longitudinal study of adult health (ELSA-Brasil). Nutrients 13:3691. https://doi.org/10.3390/nu13113691

    Article  PubMed  PubMed Central  Google Scholar 

  24. Marchioni DM, Cacau LT, de Carli E et al (2022) Low adherence to the EAT-lancet sustainable reference diet in the Brazilian population: findings from the national dietary survey 2017–2018. Nutrients 14:1187. https://doi.org/10.3390/nu14061187

    Article  PubMed  PubMed Central  Google Scholar 

  25. Moreno LA, Gottrand F, Huybrechts I et al (2014) Nutrition and lifestyle in european adolescents: the HELENA (healthy lifestyle in europe by nutrition in adolescence) study. Adv Nutr 5:615S-623S. https://doi.org/10.3945/an.113.005678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moreno LA, de Henauw S, González-Gross M et al (2008) Design and implementation of the healthy lifestyle in Europe by nutrition in adolescence cross-sectional study. Int J Obes (Lond) 32:S4–S11. https://doi.org/10.1038/ijo.2008.177

    Article  PubMed  Google Scholar 

  27. Béghin L, Castera M, Manios Y et al (2008) Quality assurance of ethical issues and regulatory aspects relating to good clinical practices in the HELENA Cross-Sectional Study. Int J Obes (Lond) 32:S12–S18. https://doi.org/10.1038/ijo.2008.179

    Article  PubMed  Google Scholar 

  28. Vandevijvere S, Geelen A, Gonzalez-Gross M et al (2013) Evaluation of food and nutrient intake assessment using concentration biomarkers in European adolescents from the healthy lifestyle in Europe by Nutrition in adolescence study. Br J Nutr 109:736–747. https://doi.org/10.1017/S0007114512002012

    Article  CAS  PubMed  Google Scholar 

  29. Goldberg GR, Black AE, Jebb SA et al (1991) Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur J Clin Nutr 45:569–581

    CAS  PubMed  Google Scholar 

  30. Black A (2000) Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. Int J Obes (Lond) 24:1119–1130. https://doi.org/10.1038/sj.ijo.0801376

    Article  CAS  Google Scholar 

  31. Bel-Serrat S, Julián-Almárcegui C, González-Gross M et al (2016) Correlates of dietary energy misreporting among European adolescents: the Healthy lifestyle in Europe by nutrition in adolescence (HELENA) study. Br J Nutr 115:1439–1452. https://doi.org/10.1017/S0007114516000283

    Article  CAS  PubMed  Google Scholar 

  32. Vyncke K, Cruz Fernandez E, Fajó-Pascual M et al (2013) Validation of the diet quality index for adolescents by comparison with biomarkers, nutrient and food intakes: the HELENA study. Br J Nutr 109:2067–2078. https://doi.org/10.1017/S000711451200414X

    Article  CAS  PubMed  Google Scholar 

  33. Vereecken CA, Covents M, Sichert-Hellert W et al (2008) Development and evaluation of a self-administered computerized 24-h dietary recall method for adolescents in Europe. Int J Obes (Lond) 32:S26–S34. https://doi.org/10.1038/ijo.2008.180

    Article  PubMed  Google Scholar 

  34. Vereecken CA, Covents M, Matthys C, Maes L (2005) Young adolescents’ nutrition assessment on computer (YANA-C). Eur J Clin Nutr 59:658–667. https://doi.org/10.1038/sj.ejcn.1602124

    Article  CAS  PubMed  Google Scholar 

  35. Andersen LF, Lioret S, Brants H et al (2011) Recommendations for a trans-European dietary assessment method in children between 4 and 14 years. Eur J Clin Nutr 65:S58–S64. https://doi.org/10.1038/ejcn.2011.88

    Article  PubMed  Google Scholar 

  36. Dehne LI, Klemm C, Henseler G, Hermann-Kunz E (1999) The German food code and nutrient data base (BLS II.2). Eur J Epidemiol 15:355–359. https://doi.org/10.1023/a:1007534427681

    Article  CAS  PubMed  Google Scholar 

  37. Haubrock J, Nöthlings U, Volatier J-L et al (2011) Estimating usual food intake distributions by using the multiple source method in the EPIC-Potsdam calibration study. J Nutr 141:914–920. https://doi.org/10.3945/jn.109.120394

    Article  CAS  PubMed  Google Scholar 

  38. Harttig U, Haubrock J, Knüppel S, Boeing H (2011) The MSM program: web-based statistics package for estimating usual dietary intake using the multiple source method. Eur J Clin Nutr 65:S87–S91. https://doi.org/10.1038/ejcn.2011.92

    Article  PubMed  Google Scholar 

  39. Sofi F, Abbate R, Gensini GF, Casini A (2010) Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis. Am J Clin Nutr 92:1189–1196. https://doi.org/10.3945/ajcn.2010.29673

    Article  CAS  PubMed  Google Scholar 

  40. Serra-Majem L, Román-Viñas B, Sanchez-Villegas A et al (2019) Benefits of the Mediterranean diet: epidemiological and molecular aspects. Mol Aspects Med 67:1–55. https://doi.org/10.1016/j.mam.2019.06.001

    Article  CAS  PubMed  Google Scholar 

  41. Germani A, Vitiello V, Giusti AM et al (2014) Environmental and economic sustainability of the Mediterranean Diet. Int J Food Sci Nutr 65:1008–1012. https://doi.org/10.3109/09637486.2014.945152

    Article  CAS  PubMed  Google Scholar 

  42. Burlingame B, Dernini S (2011) Sustainable diets: the Mediterranean diet as an example. Public Health Nutr 14:2285–2287. https://doi.org/10.1017/S1368980011002527

    Article  PubMed  Google Scholar 

  43. Arenaza L, Huybrechts I, Ortega FB et al (2019) Adherence to the Mediterranean diet in metabolically healthy and unhealthy overweight and obese European adolescents: the HELENA study. Eur J Nutr 58:2615–2623. https://doi.org/10.1007/s00394-018-1809-8

    Article  PubMed  Google Scholar 

  44. Currie C, Molcho M, Boyce W et al (2008) Researching health inequalities in adolescents: the development of the health behaviour in school-aged children (HBSC) family affluence scale. Soc Sci Med 66:1429–1436. https://doi.org/10.1016/j.socscimed.2007.11.024

    Article  PubMed  Google Scholar 

  45. Michels N, Vynckier L, Moreno LA et al (2018) Mediation of psychosocial determinants in the relation between socio-economic status and adolescents’ diet quality. Eur J Nutr 57:951–963. https://doi.org/10.1007/s00394-017-1380-8

    Article  PubMed  Google Scholar 

  46. González-Gross M, Breidenassel C, Gómez-Martínez S et al (2008) Sampling and processing of fresh blood samples within a European multicenter nutritional study: evaluation of biomarker stability during transport and storage. Int J Obes (Lond) 32:S66–S75. https://doi.org/10.1038/ijo.2008.185

    Article  CAS  PubMed  Google Scholar 

  47. Aparicio-Ugarriza R, Cuenca-García M, Gonzalez-Gross M et al (2019) Relative validation of the adapted Mediterranean diet score for adolescents by comparison with nutritional biomarkers and nutrient and food intakes: the healthy lifestyle in Europe by nutrition in adolescence (HELENA) study. Public Health Nutr 22:2381–2397. https://doi.org/10.1017/S1368980019001022

    Article  PubMed  PubMed Central  Google Scholar 

  48. Willett WC, Howe GR, Kushi LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65:1220S-1228S. https://doi.org/10.1093/ajcn/65.4.1220S

    Article  CAS  PubMed  Google Scholar 

  49. Institute of Medicine (1998) Dietary reference intakes for Thiamin, Riboflavin, niacin, vitamin B6, Folate, vitamin B12, pantothenic acid, biotin, and choline. National Academies Press, Washington, D.C.

    Google Scholar 

  50. Institute of Medicine (2001) Dietary reference intakes for vitamin A, vitamin k, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. National Academies Press

    Google Scholar 

  51. Institute of Medicine (2000) Dietary reference intakes for vitamin C, vitamin E, selenium and carotenoids. Dietary reference intakes for vitamin C, vitamin E, selenium and carotenoids. National Academies Press

    Google Scholar 

  52. Monge-Rojas R, O’Neill J, Lee-Bravatti M, Mattei J (2021) A traditional costa rican adolescents’ diet score is a valid tool to capture diet quality and identify sociodemographic groups with suboptimal diet. Front Public Health 9:708956. https://doi.org/10.3389/fpubh.2021.708956

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wong JE, Parnell WR, Howe AS et al (2013) Development and validation of a food-based diet quality index for New Zealand adolescents. BMC Public Health 13:562. https://doi.org/10.1186/1471-2458-13-562

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jenab M, Slimani N, Bictash M et al (2009) Biomarkers in nutritional epidemiology: applications, needs and new horizons. Hum Genet 125:507–525. https://doi.org/10.1007/s00439-009-0662-5

    Article  PubMed  Google Scholar 

  55. Willett WC, Stampfer MJ, Underwood BA et al (1983) Vitamins A, E, and carotene: effects of supplementation on their plasma levels. Am J Clin Nutr 38:559–566. https://doi.org/10.1093/ajcn/38.4.559

    Article  CAS  PubMed  Google Scholar 

  56. Rock CL, Swendseid ME, Jacob RA, McKee RW (1992) Plasma carotenoid levels in human subjects fed a low carotenoid diet. J Nutr 122:96–100. https://doi.org/10.1093/jn/122.1.96

    Article  CAS  PubMed  Google Scholar 

  57. Bates CJ, Rutishauser IHE, Black AE et al (1979) Long-term vitamin status and dietary intake of healthy elderly subjects. Br J Nutr 42:43–56. https://doi.org/10.1079/BJN19790088

    Article  CAS  PubMed  Google Scholar 

  58. Jacques PF, Sulsky SI, Sadowski JA et al (1993) Comparison of micronutrient intake measured by a dietary questionnaire and biochemical indicators of micronutrient status. Am J Clin Nutr 57:182–189. https://doi.org/10.1093/ajcn/57.2.182

    Article  CAS  PubMed  Google Scholar 

  59. Hodson L, Skeaff CM, Fielding BA (2008) Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog Lipid Res 47:348–380. https://doi.org/10.1016/j.plipres.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  60. Baylin A, Kim MK, Donovan-Palmer A et al (2005) Fasting whole blood as a biomarker of essential fatty acid intake in epidemiologic studies: comparison with adipose tissue and plasma. Am J Epidemiol 162:373–381. https://doi.org/10.1093/aje/kwi213

    Article  PubMed  Google Scholar 

  61. Hann CS, Rock CL, King I, Drewnowski A (2001) Validation of the healthy eating Index with use of plasma biomarkers in a clinical sample of women. Am J Clin Nutr 74:479–486. https://doi.org/10.1093/ajcn/74.4.479

    Article  CAS  PubMed  Google Scholar 

  62. Newby P, Hu FB, Rimm EB et al (2003) Reproducibility and validity of the diet quality index revised as assessed by use of a food-frequency questionnaire. Am J Clin Nutr 78:941–949. https://doi.org/10.1093/ajcn/78.5.941

    Article  CAS  PubMed  Google Scholar 

  63. Weinstein SJ, Vogt TM, Gerrior SA (2004) Healthy eating index scores are associated with blood nutrient concentrations in the third national health and nutrition examination survey. J Am Diet Assoc 104:576–584. https://doi.org/10.1016/j.jada.2004.01.005

    Article  CAS  PubMed  Google Scholar 

  64. Bach-Faig A, Geleva D, Carrasco J et al (2006) Evaluating associations between Mediterranean diet adherence indexes and biomarkers of diet and disease. Public Health Nutr 9:1110–1117. https://doi.org/10.1017/S1368980007668499

    Article  CAS  PubMed  Google Scholar 

  65. Dernini S, Berry E, Serra-Majem L et al (2017) Med Diet 4.0: the Mediterranean diet with four sustainable benefits. Public Health Nutr 20:1322–1330. https://doi.org/10.1017/S1368980016003177

    Article  CAS  PubMed  Google Scholar 

  66. Wang VH-C, Foster V, Yi SS (2021) Are recommended dietary patterns equitable? Public Health Nutr 25:464–470. https://doi.org/10.1017/S1368980021004158

    Article  PubMed  Google Scholar 

  67. Ferrari M, Mistura L, Patterson E et al (2011) Evaluation of iron status in European adolescents through biochemical iron indicators: the HELENA Study. Eur J Clin Nutr 65:340–349. https://doi.org/10.1038/ejcn.2010.279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vandevijvere S, Michels N, Verstraete S et al (2013) Intake and dietary sources of haem and non-haem iron among European adolescents and their association with iron status and different lifestyle and socio-economic factors. Eur J Clin Nutr 67:765–772. https://doi.org/10.1038/ejcn.2013.100

    Article  CAS  PubMed  Google Scholar 

  69. Beal T, Ortenzi F, Fanzo J (2023) Estimated micronutrient shortfalls of the EAT–Lancet planetary health diet. Lancet Planet Health 7:e233–e237. https://doi.org/10.1016/S2542-5196(23)00006-2

    Article  PubMed  Google Scholar 

  70. Bäck S, Skaffari E, Vepsäläinen H et al (2022) Sustainability analysis of Finnish pre-schoolers’ diet based on targets of the EAT-Lancet reference diet. Eur J Nutr 61:717–728. https://doi.org/10.1007/s00394-021-02672-3

    Article  PubMed  Google Scholar 

  71. Montejano Vallejo R, Schulz C-A, van de Locht K et al (2022) Associations of adherence to a dietary index based on the EAT–Lancet reference diet with nutritional, anthropometric, and ecological sustainability parameters: results from the German DONALD cohort study. J Nutr 152:1763–1772. https://doi.org/10.1093/jn/nxac094

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The HELENA study received funding from the European Union’s Sixth RTD Framework Program (contracts FOODCT-2007-036196-2 and FOODCT-2005-007034, respectively). Additional support was obtained from the Spanish Ministry of Education (AGL2007-29784-E/ALI). LTC received a research internship abroad scholarship (grant number 2020/12326-1) from the Sao Paulo Research Foundation (FAPESP).

Author information

Authors and Affiliations

Authors

Contributions

The authors’ contributions were as follows. LTC, DMM, and LAM designed the research; IH advised on the data curation; LTC carried out the data analyses; LTC developed the first draft and revised the manuscript; GTH-C supported with written the draft. DMM and LAM advised on statistical analyses. LAM supervised LTC. GTH-C, IH, SDH, MK, MG-G, FG, MF, EN, MJC, DM, KW, OA, YM, PS, CL, DMM, and LAM critically reviewed and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Leandro Teixeira Cacau.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Additional information

Where authors are identified as personnel of the International Agency for Research on Cancer/World Health Organization (IARC/WHO), the authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy or views of the IARC/WHO.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cacau, L.T., Hanley-Cook, G.T., Huybrechts, I. et al. Relative validity of the Planetary Health Diet Index by comparison with usual nutrient intakes, plasma food consumption biomarkers, and adherence to the Mediterranean diet among European adolescents: the HELENA study. Eur J Nutr 62, 2527–2539 (2023). https://doi.org/10.1007/s00394-023-03171-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-023-03171-3

Keywords

Navigation