Skip to main content

Advertisement

Log in

Effect of probiotics on the intestinal microbiota of hemodialysis patients: a randomized trial

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background

Intestinal dysbiosis contributes to the progression of renal failure and cardiovascular diseases in patients with chronic kidney disease. Probiotics is a promising intervention to improving intestinal dysbiosis. A double-blind clinical trial to investigate the ability of probiotics to modulate gut microbiota compositions in patients receiving hemodialysis (HD) was undertaken.

Methods

Fifty HD patients were enrolled and randomized, receiving either probiotics or placebo for 6 months. The responses to the interventions on gut microbiome, serum and fecal metabolome, serum albumin and endotoxin, endothelial activation markers and inflammatory markers were assessed.

Results

Totally, 22 in the probiotics group (11 males; 14 non-diabetic) and 23 in the placebo group (13 males; 17 non-diabetic) completed the study. Compared to that in the placebo group, probiotics did not significantly alter species diversity of the fecal microbiome. Probiotics did, however, restore the community composition, with particular significance in non-diabetic HD patients (P = 0.007 by Adonis analysis). Specifically, according to the results of linear discriminate analysis effect size, probiotics raised the proportions of family Bacteroidaceae and Enterococcaceae, and reduced Ruminococcaceae, Halomonadaceae, Peptostreptococcaceae, Clostridiales Family XIII. Incertae Sedis and Erysipelotrichaceae in non-diabetic HD patients. Additionally, probiotics reduced the abundances of several uremic retention solutes in serum or feces, including indole-3-acetic acid-O-glucuronide, 3-guanidinopropionic acid, and 1-methylinosine (P < 0.05). In the probiotic arm, no significant changes were observed in other secondary outcomes.

Conclusions

Taken together, outcomes from this study suggest that probiotics do have benefits on improving intestinal imbalances and lowering exposure to several uremic toxins in HD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4

Similar content being viewed by others

References

  1. Evenepoel P, Meijers BK, Bammens BR et al (2009) Uremic toxins originating from colonic microbial metabolism. Kidney Int Suppl 114:S12–19

    CAS  Google Scholar 

  2. Andersen K, Kesper MS, Marschner JA et al (2017) Intestinal dysbiosis, barrier dysfunction, and bacterial translocation account for CKD-related systemic inflammation. J Am Soc Nephrol 28(1):76–83

    CAS  PubMed  Google Scholar 

  3. Vaziri ND, Wong J, Pahl M et al (2013) Chronic kidney disease alters intestinal microbial flora. Kidney Int 83(2):308–315

    PubMed  Google Scholar 

  4. Natarajan R, Pechenyak B, Vyas U et al (2014) (2015) Randomized controlled trial of strain-specific probiotic formulation (Renadyl) in dialysis patients. Biomed Res Int 7:568571

    Google Scholar 

  5. Krishnamurthy VM, Wei G, Baird BC et al (2012) High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney Int 81(3):300–306

    CAS  PubMed  Google Scholar 

  6. Bammens B, Verbeke K, Vanrenterghem Y et al (2003) Evidence for impaired assimilation of protein in chronic renal failure. Kidney Int 64(6):2196–2203

    CAS  PubMed  Google Scholar 

  7. Mafra D, Barros AF, Fouque D (2013) Dietary protein metabolism by gut microbiota and its consequences for chronic kidney disease patients. Future Microbiol 8(10):1317–1323

    CAS  PubMed  Google Scholar 

  8. Bammens B, Evenepoel P, Verbeke K et al (2004) Impairment of small intestinal protein assimilation in patients with end-stage renal disease: extending the malnutrition-inflammation-atherosclerosis concept. Am J Clin Nutr 80(6):1536–1543

    CAS  PubMed  Google Scholar 

  9. Mishima E, Fukuda S, Mukawa C et al (2017) Evaluation of the impact of gut microbiota on uremic solute accumulation by a CE-TOFMS-based metabolomics approach. Kidney Int 92(3):634–645

    CAS  PubMed  Google Scholar 

  10. Vaziri ND, Goshtasbi N, Yuan J et al (2012) Uremic plasma impairs barrier function and depletes the tight junction protein constituents of intestinal epithelium. Am J Nephrol 36(5):438–443

    CAS  PubMed  Google Scholar 

  11. Koppe L, Mafra D, Fouque D (2015) Probiotics and chronic kidney disease. Kidney Int 88(5):958–966

    CAS  PubMed  Google Scholar 

  12. Yu H, Liu L, Chang Z et al (2013) Genome sequence of the bacterium bifidobacterium longum Strain CMCC P0001, a probiotic strain used for treating gastrointestinal disease. Genome Announc 1(5):e00716-13

    PubMed  PubMed Central  Google Scholar 

  13. Yu HJ, Liu W, Chang Z et al (2015) Probiotic BIFICO cocktail ameliorates Helicobacter pylori induced gastritis. World J Gastroenterol 21(21):6561–6571

    PubMed  PubMed Central  Google Scholar 

  14. Kailasapathy K, Chin J (2000) Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol Cell Biol 78(1):80–88

    CAS  PubMed  Google Scholar 

  15. Saarela M, Mogensen G, Fonden R et al (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84(3):197–215

    CAS  PubMed  Google Scholar 

  16. Shi CZ, Chen HQ, Liang Y et al (2014) Combined probiotic bacteria promotes intestinal epithelial barrier function in interleukin-10-gene-deficient mice. World J Gastroenterol 20(16):4636–4647

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hida M, Aiba Y, Sawamura S et al (1996) Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron 74(2):349–355

    CAS  PubMed  Google Scholar 

  18. Takayama F, Taki K, Niwa T (2003) Bifidobacterium in gastro-resistant seamless capsule reduces serum levels of indoxyl sulfate in patients on hemodialysis. Am J Kidney Dis 41(3 Suppl 1):S142–145

    PubMed  Google Scholar 

  19. Nakabayashi I, Nakamura M, Kawakami K et al (2011) Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: a preliminary study. Nephrol Dial Transplant 26(3):1094–1098

    CAS  PubMed  Google Scholar 

  20. Rossi M, Johnson DW, Morrison M et al (2016) Synbiotics easing renal failure by improving gut microbiology (SYNERGY): a randomized trial. Clin J Am Soc Nephrol 11(2):223–231

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Brenchley JM, Price DA, Schacker TW et al (2006) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12(12):1365–1371

    CAS  PubMed  Google Scholar 

  22. Quinn AM, Williams AR, Sivilli TI et al (2018) The plasma interleukin-6 response to acute psychosocial stress in humans is detected by a magnetic multiplex assay: comparison to high-sensitivity ELISA. Stress 21(4):376–381

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Naz S, Vallejo M, Garcia A et al (2014) Method validation strategies involved in non-targeted metabolomics. J Chromatogr A 1353:99–105

    CAS  PubMed  Google Scholar 

  24. Lin CJ, Chen HH, Pan CF et al (2011) p-Cresylsulfate and indoxyl sulfate level at different stages of chronic kidney disease. J Clin Lab Anal 25(3):191–197

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lisowska-Myjak B (2014) Uremic toxins and their effects on multiple organ systems. Nephron Clin Pract 128(3–4):303–311

    CAS  PubMed  Google Scholar 

  26. Qin N, Yang F, Li A et al (2014) Alterations of the human gut microbiome in liver cirrhosis. Nature 513(7516):59–64

    CAS  PubMed  Google Scholar 

  27. Karlsson FH, Tremaroli V, Nookaew I et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498(7452):99–103

    CAS  PubMed  Google Scholar 

  28. Qin J, Li Y, Cai Z et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–60

    CAS  PubMed  Google Scholar 

  29. Nueno-Palop C, Narbad A (2011) Probiotic assessment of Enterococcus faecalis CP58 isolatd from human gut. Int J Food Microbiol 145(2–3):390–394

    CAS  PubMed  Google Scholar 

  30. Gong J, Bai T, Zhang L et al (2017) Inhibition effect of Bifidobacterium longum, Lactobacillus acidophilus, Streptococcus thermophilus and Enterococcus faecalis and their related products on human colonic smooth muscle in vitro. PLoS One 12(12):e0189257

    PubMed  PubMed Central  Google Scholar 

  31. Han SK, Shin MS, Park HE et al (2014) Screening of Bacteriocin-producing Enterococcus faecalis strains for antagonistic activities against Clostridium perfringens. Korean J Food Sci Anim Resour 34(5):614–621

    PubMed  PubMed Central  Google Scholar 

  32. Kieffer DA, Piccolo BD, Vaziri ND et al (2016) Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats. Am J Physiol Renal Physiol 310(9):F857

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Furuse SU, Ohse T, Jo-Watanabe A et al (2014) Galacto-oligosaccharides attenuate renal injury with microbiota modification. Physiol Rep 2(7):e12029

    PubMed  PubMed Central  Google Scholar 

  34. Russell WR, Duncan SH, Scobbie L et al (2013) Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. Mol Nutr Food Res 57(3):523–535

    CAS  PubMed  Google Scholar 

  35. Smith EA, Macfarlane GT (1996) Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol 81(3):288–302

    CAS  PubMed  Google Scholar 

  36. Weissbach H, King W, Sjoerdsma A et al (1959) Formation of indole-3-acetic acid and tryptamine in animals: a method for estimation of indole-3-acetic acid in tissues. J Biol Chem 234(1):81–86

    CAS  PubMed  Google Scholar 

  37. Dou L, Sallee M, Cerini C et al (2015) The cardiovascular effect of the uremic solute indole-3 acetic acid. J Am Soc Nephrol 26(4):876–887

    CAS  PubMed  Google Scholar 

  38. Larsen N, Vogensen FK, van den Berg FW et al (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5(2):e9085

    PubMed  PubMed Central  Google Scholar 

  39. Sato J, Kanazawa A, Ikeda F et al (2014) Gut dysbiosis and detection of "live gut bacteria" in blood of Japanese patients with type 2 diabetes. Diabetes Care 37(8):2343

    CAS  PubMed  Google Scholar 

  40. Karjalainen KM, Knuuttila ML, Kaar ML (1996) Salivary factors in children and adolescents with insulin-dependent diabetes mellitus. Pediatr Dent 18(4):306–311

    CAS  PubMed  Google Scholar 

  41. Romero G, Larner J (1993) Insulin mediators and the mechanism of insulin action. Adv Pharmacol 24:21–50

    CAS  PubMed  Google Scholar 

  42. Hong JH, Jang HW, Kang YE et al (2012) Urinary chiro- and myo-inositol levels as a biological marker for type 2 diabetes mellitus. Dis Mark 33(4):193–199

    CAS  Google Scholar 

  43. Kennington AS, Hill CR, Craig J et al (1990) Low urinary chiro-inositol excretion in non-insulin-dependent diabetes mellitus. N Engl J Med 323(6):373–378

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Qiong Gao and Xiaomin Liu for assistance as the study nurses, and Sine pharmaceutical company for providing free placebo capsules. In addition, we also would like to thank Editage for English language editing.

Funding

This study was supported by Shannxi Provincial Science and Technology Foundation (Grant no. 2017ZDXM-SF-057) and the National Natural Science Foundation of China (Grant no. 81570670).

Author information

Authors and Affiliations

Authors

Contributions

HJ contributed to study concept and design, acquisition of data, data analyses, interpretation of data, drafting of the manuscript, critical review of the manuscript, other support (administrative, technical, material), and study supervision. SL, HL, and LC performed data analyses and contributed to study concept and design, interpretation of data, drafting of the manuscript, critical review of the manuscript, statistical analysis, and led study supervision. SSL, KS, and JX conducted the study per protocol, contributed to patient acquisition, acquisition of data and drafting of the manuscript. MW and QH contributed to acquisition of data, interpretation of data, and critical review of the manuscript.

Corresponding author

Correspondence to Hongli Jiang.

Ethics declarations

Conflict of interest

None declared.

Ethics approval and consent to participate

The Ethical Committees of First Affiliated Hospital of Xi’an Jiaotong University approved the study (XJTU1AF2016LSL-015). All participant provided written informed consent.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 21851 kb)

Supplementary file2 (PDF 3009 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Liu, H., Chen, L. et al. Effect of probiotics on the intestinal microbiota of hemodialysis patients: a randomized trial. Eur J Nutr 59, 3755–3766 (2020). https://doi.org/10.1007/s00394-020-02207-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02207-2

Keywords

Navigation