Skip to main content

Advertisement

Log in

Increased vitamin D-binding protein and decreased free 25(OH)D in obese women of reproductive age

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Obese subjects have lower circulating 25-hydroxyvitamin D (25(OH)D) than normal-weight subjects. Knowledge is scarce regarding differences in vitamin D-binding protein (DBP), free 25(OH)D, and intake of vitamin D between normal-weight and obese subjects. The purpose of this study was to examine intake and vitamin D status in obese compared with normal-weight women.

Methods

Between September 2009 and October 2011, 43 obese and 43 normal-weight women, 22–45 years of age, mean BMI of 39.1 ± 4.6 and 21.6 ± 1.8 kg/m2, respectively, were recruited in the western Sweden region (latitude 57°N). Blood samples, data regarding diet, and sun exposure were collected.

Results

DBP concentrations were 320 ± 121 and 266 ± 104 μg/mL (P = 0.02) in obese and normal-weight women, respectively. Calculated free 25(OH)D was 13.3 ± 5.5 (obese) and 23.7 ± 10.7 (normal-weight) (P < 0.001). The obese women had a 20.1 nmol/L lower mean 25(HO)D concentration compared to normal-weight women (P < 0.001). 56 % of obese women and 12 % of normal-weight women had 25(OH)D concentrations ≤50 nmol/L. There was no statistically significant difference in total vitamin D intake between the groups. 39 % of the women had a total vitamin D intake <7.5 μg/day, the current national recommendation for vitamin D in Sweden.

Conclusions

Obese women had higher DBP concentrations compared with normal-weight women and lower free 25(OH)D. The obese women were more likely to have 25(OH)D concentrations that could be considered suboptimal. Vitamin D intake was generally low in normal-weight and obese women of childbearing age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Swinburn BA, Sacks G, Lo SK, Westerterp KR, Rush EC, Rosenbaum M, Luke A, Schoeller DA, DeLany JP, Butte NF, Ravussin E (2009) Estimating the changes in energy flux that characterize the rise in obesity prevalence. Am J Clin Nutr 89(6):1723–1728. doi:10.3945/ajcn.2008.27061

    Article  CAS  Google Scholar 

  2. Javaid MK, Crozier SR, Harvey NC, Gale CR, Dennison EM, Boucher BJ, Arden NK, Godfrey KM, Cooper C (2006) Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. Lancet 367(9504):36–43. doi:10.1016/S0140-6736(06)67922-1

    Article  CAS  Google Scholar 

  3. Bodnar LM, Catov JM, Simhan HN, Holick MF, Powers RW, Roberts JM (2007) Maternal vitamin D deficiency increases the risk of preeclampsia. J Clin Endocrinol Metab 92(9):3517–3522. doi:10.1210/jc.2007-0718

    Article  CAS  Google Scholar 

  4. Poel YH, Hummel P, Lips P, Stam F, van der Ploeg T, Simsek S (2012) Vitamin D and gestational diabetes: a systematic review and meta-analysis. Eur J Intern Med 23(5):465–469. doi:10.1016/j.ejim.2012.01.007

    Article  CAS  Google Scholar 

  5. Konradsen S, Ag H, Lindberg F, Hexeberg S, Jorde R (2008) Serum 1,25-dihydroxy vitamin D is inversely associated with body mass index. Eur J Nutr 47(2):87–91. doi:10.1007/s00394-008-0700-4

    Article  CAS  Google Scholar 

  6. Drincic AT, Armas LA, Van Diest EE, Heaney RP (2012) Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity (Silver Spring) 20(7):1444–1448. doi:10.1038/oby.2011.404

    Article  CAS  Google Scholar 

  7. Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF (2000) Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 72(3):690–693

    CAS  Google Scholar 

  8. Chun RF (2012) New perspectives on the vitamin D binding protein. Cell Biochem Funct 30(6):445–456. doi:10.1002/cbf.2835

    Article  CAS  Google Scholar 

  9. Heijboer AC, Blankenstein MA, Kema IP, Buijs MM (2012) Accuracy of 6 routine 25-hydroxyvitamin D assays: influence of vitamin D binding protein concentration. Clin Chem 58(3):543–548. doi:10.1373/clinchem.2011.176545

    Article  CAS  Google Scholar 

  10. Bastard JP, Jardel C, Bruckert E, Blondy P, Capeau J, Laville M, Vidal H, Hainque B (2000) Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab 85(9):3338–3342

    CAS  Google Scholar 

  11. Bolland MJ, Grey AB, Ames RW, Horne AM, Mason BH, Wattie DJ, Gamble GD, Bouillon R, Reid IR (2007) Age-, gender-, and weight-related effects on levels of 25-hydroxyvitamin D are not mediated by vitamin D binding protein. Clin Endocrinol (Oxf) 67(2):259–264. doi:10.1111/j.1365-2265.2007.02873.x

    Article  CAS  Google Scholar 

  12. Oberbach A, Bluher M, Wirth H, Till H, Kovacs P, Kullnick Y, Schlichting N, Tomm JM, Rolle-Kampczyk U, Murugaiyan J, Binder H, Dietrich A, von Bergen M (2011) Combined proteomic and metabolomic profiling of serum reveals association of the complement system with obesity and identifies novel markers of body fat mass changes. J Proteome Res 10(10):4769–4788. doi:10.1021/pr2005555

    Article  CAS  Google Scholar 

  13. Powe CE, Ricciardi C, Berg AH, Erdenesanaa D, Collerone G, Ankers E, Wenger J, Karumanchi SA, Thadhani R, Bhan I (2011) Vitamin D-binding protein modifies the vitamin D-bone mineral density relationship. J Bone Miner Res 26(7):1609–1616. doi:10.1002/jbmr.387

    Article  CAS  Google Scholar 

  14. Powe CE, Seely EW, Rana S, Bhan I, Ecker J, Karumanchi SA, Thadhani R (2010) First trimester vitamin D, vitamin D binding protein, and subsequent preeclampsia. Hypertension 56(4):758–763. doi:10.1161/HYPERTENSIONAHA.110.158238

    Article  CAS  Google Scholar 

  15. Taes YE, Goemaere S, Huang G, Van Pottelbergh I, De Bacquer D, Verhasselt B, Van den Broeke C, Delanghe JR, Kaufman JM (2006) Vitamin D binding protein, bone status and body composition in community-dwelling elderly men. Bone 38(5):701–707. doi:10.1016/j.bone.2005.10.006

    Article  CAS  Google Scholar 

  16. Weinstein SJ, Stolzenberg-Solomon RZ, Kopp W, Rager H, Virtamo J, Albanes D (2012) Impact of circulating vitamin D binding protein levels on the association between 25-hydroxyvitamin D and pancreatic cancer risk: a nested case–control study. Cancer Res 72(5):1190–1198. doi:10.1158/0008-5472.CAN-11-2950

    Article  CAS  Google Scholar 

  17. Winters SJ, Chennubhatla R, Wang C, Miller JJ (2009) Influence of obesity on vitamin D-binding protein and 25-hydroxy vitamin D levels in African American and white women. Metabolism 58(4):438–442. doi:10.1016/j.metabol.2008.10.017

    Article  CAS  Google Scholar 

  18. Engelsen O, Brustad M, Aksnes L, Lund E (2005) Daily duration of vitamin D synthesis in human skin with relation to latitude, total ozone, altitude, ground cover, aerosols and cloud thickness. Photochem Photobiol 81(6):1287–1290. doi:10.1562/2004-11-19-RN-375

    Article  CAS  Google Scholar 

  19. Nordic Nutrition Recommendations (2004) Integrating nutrition and physical activity, 4th edn. Nordic Council of Ministers, Copenhagen

    Google Scholar 

  20. Becker W, Persson M (2002) Riksmaten 1997–98. Befolkningens kostvanor och näringsintag. Metod-och resultatanalys (The second national food consumption survey 1997–98. Dietary habits and nutrient intake in Sweden). National Food Agency, Uppsala

  21. Amcoff E, Edberg A, Enghardt Barbieri H, Lindroos A, Nälsén C, Pearson M, Warensjö Lemming E (2012) Livsmedels- och näringsintag bland vuxna i Sverige. Resultat från matvaneundersökning utförd 2010–11 (The third national food consumption survey 2010–11. Food and nutrient intake among adults in Sweden). National Food Agency, Uppsala

  22. Burgaz A, Akesson A, Oster A, Michaelsson K, Wolk A (2007) Associations of diet, supplement use, and ultraviolet B radiation exposure with vitamin D status in Swedish women during winter. Am J Clin Nutr 86(5):1399–1404

    CAS  Google Scholar 

  23. Napolitano A, Miller SR, Murgatroyd PR, Coward WA, Wright A, Finer N, De Bruin TW, Bullmore ET, Nunez DJ (2008) Validation of a quantitative magnetic resonance method for measuring human body composition. Obesity (Silver Spring) 16(1):191–198. doi:10.1038/oby.2007.29

    Article  Google Scholar 

  24. Lindroos AK, Lissner L, Sjostrom L (1993) Validity and reproducibility of a self-administered dietary questionnaire in obese and non-obese subjects. Eur J Clin Nutr 47(7):461–481

    CAS  Google Scholar 

  25. Bouchard C, Tremblay A, Leblanc C, Lortie G, Savard R, Theriault G (1983) A method to assess energy expenditure in children and adults. Am J Clin Nutr 37(3):461–467

    CAS  Google Scholar 

  26. Bikle DD, Gee E, Halloran B, Kowalski MA, Ryzen E, Haddad JG (1986) Assessment of the free fraction of 25-hydroxyvitamin D in serum and its regulation by albumin and the vitamin D-binding protein. J Clin Endocrinol Metab 63(4):954–959

    Article  CAS  Google Scholar 

  27. Bikle DD, Siiteri PK, Ryzen E, Haddad JG (1985) Serum protein binding of 1,25-dihydroxyvitamin D: a reevaluation by direct measurement of free metabolite levels. J Clin Endocrinol Metab 61(5):969–975

    Article  CAS  Google Scholar 

  28. Cooke NE, McLeod JF, Wang XK, Ray K (1991) Vitamin D binding protein: genomic structure, functional domains, and mRNA expression in tissues. J Steroid Biochem Mol Biol 40(4–6):787–793

    Article  CAS  Google Scholar 

  29. Dick IM, Prince RL, Kelly JJ, Ho KK (1995) Oestrogen effects on calcitriol levels in post-menopausal women: a comparison of oral versus transdermal administration. Clin Endocrinol (Oxf) 43(2):219–224

    Article  CAS  Google Scholar 

  30. Bikle DD, Gee E, Halloran B, Haddad JG (1984) Free 1,25-dihydroxyvitamin D levels in serum from normal subjects, pregnant subjects, and subjects with liver disease. J Clin Invest 74(6):1966–1971. doi:10.1172/JCI111617

    Article  CAS  Google Scholar 

  31. Pasquali R (2006) Obesity and androgens: facts and perspectives. Fertil Steril 85(5):1319–1340. doi:10.1016/j.fertnstert.2005.10.054

    Article  CAS  Google Scholar 

  32. Lauridsen AL, Vestergaard P, Nexo E (2001) Mean serum concentration of vitamin D-binding protein (Gc globulin) is related to the Gc phenotype in women. Clin Chem 47(4):753–756

    CAS  Google Scholar 

  33. Jiang H, Xiong DH, Guo YF, Shen H, Xiao P, Yang F, Chen Y, Zhang F, Recker RR, Deng HW (2007) Association analysis of vitamin D-binding protein gene polymorphisms with variations of obesity-related traits in Caucasian nuclear families. Int J Obes (Lond) 31(8):1319–1324. doi:10.1038/sj.ijo.0803583

    Article  CAS  Google Scholar 

  34. Guha C, Osawa M, Werner PA, Galbraith RM, Paddock GV (1995) Regulation of human Gc (vitamin D-binding) protein levels: hormonal and cytokine control of gene expression in vitro. Hepatology 21(6):1675–1681

    CAS  Google Scholar 

  35. Parikh SJ, Edelman M, Uwaifo GI, Freedman RJ, Semega-Janneh M, Reynolds J, Yanovski JA (2004) The relationship between obesity and serum 1,25-dihydroxy vitamin D concentrations in healthy adults. J Clin Endocrinol Metab 89(3):1196–1199

    Article  CAS  Google Scholar 

  36. Bischoff-Ferrari HA, Giovannucci E, Willett WC, Dietrich T, Dawson-Hughes B (2006) Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr 84(1):18–28

    CAS  Google Scholar 

  37. Lips P (2004) Which circulating level of 25-hydroxyvitamin D is appropriate? J Steroid Biochem Mol Biol 89–90(1–5):611–614. doi:10.1016/j.jsbmb.2004.03.040

    Article  Google Scholar 

  38. Zittermann A, Schleithoff SS, Koerfer R (2005) Putting cardiovascular disease and vitamin D insufficiency into perspective. Br J Nutr 94(4):483–492

    Article  CAS  Google Scholar 

  39. Hultin H, Edfeldt K, Sundbom M, Hellman P (2010) Left-shifted relation between calcium and parathyroid hormone in obesity. J Clin Endocrinol Metab 95(8):3973–3981. doi:10.1210/jc.2009-2822

    Article  CAS  Google Scholar 

  40. Shapses SA, Sukumar D, Schneider SH, Schlussel Y, Brolin RE, Taich L (2012) Hormonal and dietary influences on true fractional calcium absorption in women: role of obesity. Osteoporos Int. doi:10.1007/s00198-012-1901-5

    Google Scholar 

  41. Kamycheva E, Joakimsen RM, Jorde R (2003) Intakes of calcium and vitamin D predict body mass index in the population of Northern Norway. J Nutr 133(1):102–106

    CAS  Google Scholar 

  42. Tidwell DK, Valliant MW (2011) Higher amounts of body fat are associated with inadequate intakes of calcium and vitamin D in African American women. Nutr Res 31(7):527–536. doi:10.1016/j.nutres.2011.06.005

    Article  CAS  Google Scholar 

  43. McKinney K, Breitkopf CR, Berenson AB (2008) Association of race, body fat and season with vitamin D status among young women: a cross-sectional study. Clin Endocrinol (Oxf) 69(4):535–541. doi:10.1111/j.1365-2265.2008.03233.x

    Article  CAS  Google Scholar 

  44. Gagnon C, Baillargeon JP, Desmarais G, Fink GD (2010) Prevalence and predictors of vitamin D insufficiency in women of reproductive age living in northern latitude. Eur J Endocrinol 163(5):819–824. doi:10.1530/EJE-10-0441

    Article  CAS  Google Scholar 

  45. Burgaz A, Akesson A, Michaelsson K, Wolk A (2009) 25-Hydroxyvitamin D accumulation during summer in elderly women at latitude 60°N. J Intern Med 266(5):476–483. doi:10.1111/j.1365-2796.2009.02125.x

    Article  CAS  Google Scholar 

  46. Kull M, Kallikorm R, Lember M (2009) Body mass index determines sunbathing habits: implications on vitamin D levels. Intern Med J 39(4):256–258. doi:10.1111/j.1445-5994.2009.01900.x

    Article  CAS  Google Scholar 

  47. Harris SS, Dawson-Hughes B (2007) Reduced sun exposure does not explain the inverse association of 25-hydroxyvitamin D with percent body fat in older adults. J Clin Endocrinol Metab 92(8):3155–3157. doi:10.1210/jc.2007-0722

    Article  CAS  Google Scholar 

  48. Thieden E, Jorgensen HL, Jorgensen NR, Philipsen PA, Wulf HC (2008) Sunbed radiation provokes cutaneous vitamin D synthesis in humans—a randomized controlled trial. Photochem Photobiol 84(6):1487–1492. doi:10.1111/j.1751-1097.2008.00372.x

    Article  CAS  Google Scholar 

  49. Heitmann BL, Lissner L (1995) Dietary underreporting by obese individuals—is it specific or non-specific? BMJ 311(7011):986–989

    Article  CAS  Google Scholar 

  50. Karelis AD, Lavoie ME, Fontaine J, Messier V, Strychar I, Rabasa-Lhoret R, Doucet E (2010) Anthropometric, metabolic, dietary and psychosocial profiles of underreporters of energy intake: a doubly labeled water study among overweight/obese postmenopausal women—a Montreal Ottawa New Emerging Team study. Eur J Clin Nutr 64(1):68–74. doi:10.1038/ejcn.2009.119

    Article  CAS  Google Scholar 

  51. Yannakoulia M, Panagiotakos DB, Pitsavos C, Bathrellou E, Chrysohoou C, Skoumas Y, Stefanadis C (2007) Low energy reporting related to lifestyle, clinical, and psychosocial factors in a randomly selected population sample of Greek adults: the ATTICA Study. J Am Coll Nutr 26(4):327–333

    Article  Google Scholar 

Download references

Acknowledgments

We express our gratitude to the women who participated in our study. Also, we are grateful to the personnel at the Obesity Unit at the Sahlgrenska University hospital for their assistance in recruiting the obese participants. The authors’ responsibilities were as follows—T.K., N.J., and A.H.: designed research; T.K.: conducted research; T.K.: analyzed data; A.H., N.J., T.K., I.L., A.O., and L.H. did data interpretation; T.K. and I.L.: wrote the paper; I.L. and A.H.: had primary responsibility for final content. All authors read and approved the final manuscript. Supported by grants from Novo Nordisk Foundation, the Swedish Research Council (No. 12206), the Swedish Diabetes Association Research Foundation, the Swedish federal government under the LUA/ALF agreement, IngaBritt and Arne Lundbergs Foundation, Freemasonry Barnhus Board in Gothenburg, the Mary von Sydow Foundation, the Herbert and Karin Jacobsson Foundation, and the Wilhelm and Martina Lundgren Foundation.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Therese Karlsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlsson, T., Osmancevic, A., Jansson, N. et al. Increased vitamin D-binding protein and decreased free 25(OH)D in obese women of reproductive age. Eur J Nutr 53, 259–267 (2014). https://doi.org/10.1007/s00394-013-0524-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-013-0524-8

Keywords

Navigation