Skip to main content
Log in

Differential effects of 1α,25-dihydroxycholecalciferol on MCP-1 and adiponectin production in human white adipocytes

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background/aim

Obesity is characterized by a low-grade inflammation in white adipose tissue (WAT), which promotes insulin resistance. Low serum levels of 1α,25-dihydroxycholecalciferol (DHCC) associate with insulin resistance and higher body mass index although it is unclear whether vitamin D supplementation improves insulin sensitivity. We investigated the effects of DHCC on adipokine gene expression and secretion in adipocytes focusing on two key factors with pro-inflammatory [monocyte chemoattractant protein-1 (MCP-1/CCL2)] and anti-inflammatory [adiponectin (ADIPOQ)] effects.

Methods

Pre-adipocytes were isolated from human subcutaneous WAT and cultured until full differentiation. Differentiated adipocytes were either pre-treated with DHCC (10−7 M) and subsequently incubated with tumor necrosis factor-α (TNFα, 100 ng/mL) or concomitantly incubated with TNFα/DHCC. MCP1 and adiponectin mRNA expression was measured by RT–PCR and protein release by ELISA.

Results

DHCC was not toxic and did not affect adipocyte morphology or the mRNA levels of adipocyte-specific genes. TNFα induced a significant increase in CCL2 mRNA and protein secretion, while DHCC alone reduced CCL2 mRNA expression (~25%, p < 0.05). DHCC attenuated TNFα-induced CCL2 mRNA expression in both pre-incubation (~15%, p < 0.05) and concomitant (~60%, p < 0.01) treatments. TNFα reduced ADIPOQ mRNA (~80%) and secretion (~35%). DHCC alone decreased adiponectin secretion to a similar degree (~35%, p < 0.05). Concomitant treatment with DHCC/TNFα for 48 h had an additive effect, resulting in a pronounced reduction in adiponectin secretion (~70%).

Conclusions

DHCC attenuates MCP-1 and adiponectin production in human adipocytes, thereby reducing the expression of both pro- and anti-inflammatory factors. These effects may explain the difficulties so far in determining the role of DHCC in insulin sensitivity and obesity in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259(5091):87–91

    Article  CAS  Google Scholar 

  2. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM (1995) Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95(5):2409–2415

    Article  CAS  Google Scholar 

  3. Lofgren P, van Harmelen V, Reynisdottir S, Naslund E, Ryden M, Rossner S, Arner P (2000) Secretion of tumor necrosis factor-alpha shows a strong relationship to insulin-stimulated glucose transport in human adipose tissue. Diabetes 49(5):688–692

    Article  CAS  Google Scholar 

  4. Ryden M, Dicker A, van Harmelen V, Hauner H, Brunnberg M, Perbeck L, Lonnqvist F, Arner P (2002) Mapping of early signaling events in tumor necrosis factor-alpha-mediated lipolysis in human fat cells. J Biol Chem 277(2):1085–1091

    Article  CAS  Google Scholar 

  5. Prins JB, Niesler CU, Winterford CM, Bright NA, Siddle K, O’Rahilly S, Walker NI, Cameron DP (1997) Tumor necrosis factor-alpha induces apoptosis of human adipose cells. Diabetes 46(12):1939–1944

    Article  CAS  Google Scholar 

  6. Ruan H, Hacohen N, Golub TR, Van Parijs L, Lodish HF (2002) Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3–L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes 51(5):1319–1336

    Article  CAS  Google Scholar 

  7. Wang B, Trayhurn P (2006) Acute and prolonged effects of TNF-alpha on the expression and secretion of inflammation-related adipokines by human adipocytes differentiated in culture. Pflugers Arch 452(4):418–427

    Article  CAS  Google Scholar 

  8. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K, Kasuga M (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 116(6):1494–1505

    Article  CAS  Google Scholar 

  9. Kim CS, Park HS, Kawada T, Kim JH, Lim D, Hubbard NE, Kwon BS, Erickson KL, Yu R (2006) Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. Int J Obes (Lond) 30(9):1347–1355

    Article  CAS  Google Scholar 

  10. Sartipy P, Loskutoff DJ (2003) Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci USA 100(12):7265–7270

    Article  CAS  Google Scholar 

  11. Trujillo ME, Scherer PE (2005) Adiponectin—journey from an adipocyte secretory protein to biomarker of the metabolic syndrome. J Intern Med 257(2):167–175

    Article  CAS  Google Scholar 

  12. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA (2001) Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 86(5):1930–1935

    Article  CAS  Google Scholar 

  13. Kern PA, Di Gregorio GB, Lu T, Rassouli N, Ranganathan G (2003) Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes 52(7):1779–1785

    Article  CAS  Google Scholar 

  14. Wang B, Jenkins JR, Trayhurn P (2005) Expression and secretion of inflammation-related adipokines by human adipocytes differentiated in culture: integrated response to TNF-alpha. Am J Physiol Endocrinol Metab 288(4):E731–E740

    Article  CAS  Google Scholar 

  15. Trayhurn P, Wang B, Wood IS (2008) Hypoxia and the endocrine and signalling role of white adipose tissue. Arch Physiol Biochem 114(4):267–276

    Article  CAS  Google Scholar 

  16. Chiu KC, Chu A, Go VL, Saad MF (2004) Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am J Clin Nutr 79(5):820–825

    CAS  Google Scholar 

  17. Bischof MG, Heinze G, Vierhapper H (2006) Vitamin D status and its relation to age and body mass index. Horm Res 66(5):211–215

    Article  CAS  Google Scholar 

  18. Zemel MB, Sun X (2008) Calcitriol and energy metabolism. Nutr Rev 66(10 Suppl 2):S139–S146

    Google Scholar 

  19. Shi H, Norman AW, Okamura WH, Sen A, Zemel MB (2001) 1alpha, 25-Dihydroxyvitamin D3 modulates human adipocyte metabolism via nongenomic action. Faseb J 15(14):2751–2753

    CAS  Google Scholar 

  20. Shi H, Norman AW, Okamura WH, Sen A, Zemel MB (2002) 1alpha, 25-dihydroxyvitamin D3 inhibits uncoupling protein 2 expression in human adipocytes. Faseb J 16(13):1808–1810

    CAS  Google Scholar 

  21. Carlberg C, Seuter S (2009) A genomic perspective on vitamin D signaling. Anticancer Res 29(9):3485–3493

    CAS  Google Scholar 

  22. Sun X, Zemel MB (2007) 1Alpha, 25-dihydroxyvitamin D3 modulation of adipocyte reactive oxygen species production. Obesity (Silver Spring) 15(8):1944–1953

    Article  CAS  Google Scholar 

  23. Zhang Z, Yuan W, Sun L, Szeto FL, Wong KE, Li X, Kong J, Li YC (2007) 1,25-Dihydroxyvitamin D3 targeting of NF-kappaB suppresses high glucose-induced MCP-1 expression in mesangial cells. Kidney Int 72(2):193–201. doi:10.1038/sj.ki.5002296

    Article  CAS  Google Scholar 

  24. Giulietti A, van Etten E, Overbergh L, Stoffels K, Bouillon R, Mathieu C (2007) Monocytes from type 2 diabetic patients have a pro-inflammatory profile. 1,25-Dihydroxyvitamin D(3) works as anti-inflammatory. Diabetes Res Clin Pract 77(1):47–57

    Article  CAS  Google Scholar 

  25. Chen Y, Kong J, Sun T, Li G, Szeto FL, Liu W, Deb DK, Wang Y, Zhao Q, Thadhani R, Li YC (2011) 1,25-Dihydroxyvitamin D suppresses inflammation-induced expression of plasminogen activator inhibitor-1 by blocking nuclear factor-kappaB activation. Arch Biochem Biophys 507(2):241–247

    Google Scholar 

  26. van Harmelen V, Skurk T, Hauner H (2005) Primary culture and differentiation of human adipocyte precursor cells. Methods Mol Med 107:125–135. doi:1-59259-861-7:125

    Google Scholar 

  27. Dicker A, Astrom G, Sjolin E, Hauner H, Arner P, van Harmelen V (2007) The influence of preadipocyte differentiation capacity on lipolysis in human mature adipocytes. Horm Metab Res 39(4):282–287

    Article  CAS  Google Scholar 

  28. Dicker A, Kaaman M, van Harmelen V, Astrom G, Blanc KL, Ryden M (2005) Differential function of the alpha2A-adrenoceptor and Phosphodiesterase-3B in human adipocytes of different origin. Int J Obes (Lond) 29(12):1413–1421. doi:10.1038/sj.ijo.0803042

    Article  CAS  Google Scholar 

  29. Mairal A, Langin D, Arner P, Hoffstedt J (2006) Human adipose triglyceride lipase (PNPLA2) is not regulated by obesity and exhibits low in vitro triglyceride hydrolase activity. Diabetologia 49(7):1629–1636. doi:10.1007/s00125-006-0272-x

    Article  CAS  Google Scholar 

  30. Pettersson AT, Mejhert N, Jernas M, Carlsson LM, Dahlman I, Laurencikiene J, Arner P, Ryden M Twist1 in human white adipose tissue and obesity. J Clin Endocrinol Metab 96(1):133–141. doi:10.1210/jc.2010-0929

  31. Sun X, Morris KL, Zemel MB (2008) Role of calcitriol and cortisol on human adipocyte proliferation and oxidative and inflammatory stress: a microarray study. J Nutrigenet Nutrigenomics 1(1–2):30–48

    Article  CAS  Google Scholar 

  32. Wang B, Wood IS, Trayhurn P (2007) Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflugers Arch 455(3):479–492

    Article  CAS  Google Scholar 

  33. Wood IS, Wang B, Lorente-Cebrian S, Trayhurn P (2007) Hypoxia increases expression of selective facilitative glucose transporters (GLUT) and 2-deoxy-d-glucose uptake in human adipocytes. Biochem Biophys Res Commun 361(2):468–473. doi:10.1016/j.bbrc.2007.07.032

    Article  Google Scholar 

  34. Sun X, Zemel MB (2007) Calcium and 1,25-dihydroxyvitamin D3 regulation of adipokine expression. Obesity (Silver Spring) 15(2):340–348

    Article  CAS  Google Scholar 

  35. Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y (2000) Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 102(11):1296–1301

    CAS  Google Scholar 

  36. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7(8):941–946

    Article  CAS  Google Scholar 

  37. Zhang B, Berger J, Hu E, Szalkowski D, White-Carrington S, Spiegelman BM, Moller DE (1996) Negative regulation of peroxisome proliferator-activated receptor-gamma gene expression contributes to the antiadipogenic effects of tumor necrosis factor-alpha. Mol Endocrinol 10(11):1457–1466

    Article  CAS  Google Scholar 

  38. Kruger S, Kreft B (2001) 1,25-dihydroxyvitamin D3 differentially regulates IL-1alpha-stimulated IL-8 and MCP-1 mRNA expression and chemokine secretion by human primary proximal tubular epithelial cells. Exp Nephrol 9(3):223–228

    Article  CAS  Google Scholar 

  39. Zehnder D, Quinkler M, Eardley KS, Bland R, Lepenies J, Hughes SV, Raymond NT, Howie AJ, Cockwell P, Stewart PM, Hewison M (2008) Reduction of the vitamin D hormonal system in kidney disease is associated with increased renal inflammation. Kidney Int 74(10):1343–1353. doi:10.1038/ki.2008.453

    Article  CAS  Google Scholar 

  40. Sun X, Zemel MB (2008) Calcitriol and calcium regulate cytokine production and adipocyte-macrophage cross-talk. J Nutr Biochem 19(6):392–399

    Article  CAS  Google Scholar 

  41. Ailhaud G (1997) Molecular mechanisms of adipocyte differentiation. J Endocrinol 155(2):201–202

    Article  CAS  Google Scholar 

  42. Sun X, Zemel MB (2004) Role of uncoupling protein 2 (UCP2) expression and 1alpha, 25-dihydroxyvitamin D3 in modulating adipocyte apoptosis. FASEB J 18(12):1430–1432. doi:10.1096/fj.04-1971fje

    CAS  Google Scholar 

  43. Mahajan A, Stahl CH (2009) Dihydroxy-cholecalciferol stimulates adipocytic differentiation of porcine mesenchymal stem cells. J Nutr Biochem 20(7):512–520

    Article  CAS  Google Scholar 

  44. Alvarez JA, Ashraf A (2010) Role of vitamin d in insulin secretion and insulin sensitivity for glucose homeostasis. Int J Endocrinol 351–385. doi:10.1155/2010/351385

Download references

Acknowledgments

This work has been supported by Nordic Centre of Excellence on “Systems biology in controlled dietary interventions and cohort studies, SYSDIET (No. 070014)”. MR, PA, and ID are supported by grants from the Swedish Research Council. MR and PA are also supported by grants from the NovoNordisk Foundation and the Swedish Diabetes Fund.

Conflict of interest

All the authors have read and approved submission of the manuscript and declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Lorente-Cebrián.

Additional information

S. Lorente-Cebrián and A. Eriksson contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorente-Cebrián, S., Eriksson, A., Dunlop, T. et al. Differential effects of 1α,25-dihydroxycholecalciferol on MCP-1 and adiponectin production in human white adipocytes. Eur J Nutr 51, 335–342 (2012). https://doi.org/10.1007/s00394-011-0218-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-011-0218-z

Keywords

Navigation