Skip to main content
Log in

Ist Rheuma scanbar?

Ein Überblick über die aktuelle Studienlage zur fluoreszenzoptischen Bildgebung

Can rheuma be scanned?

Review of the current study situation on fluorescence optical imaging

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Technologie der Indocyaningrün(ICG)-basierten fluoreszenzoptischen Bildgebung (FOI) mittels Xiralite®-System (Xiralite GmbH, Berlin, Deutschland) („Rheumascan“) ist weltweit seit Zulassung für den klinischen Gebrauch in der europäischen Union (2009), in den USA (2014) als auch in Asien Gegenstand vieler verschiedener Studien. FOI stellt die durch Entzündung hervorgerufene gestörte Mikrozirkulation in den Gelenken beider Hände dar.

Ziel der Arbeit

Die Arbeit soll einen Überblick über die derzeitige Studienlage zur ICG-basierten FOI in den verschiedenen rheumatologischen Indikationen geben.

Methoden

Es wird eine umfassende Literaturanalyse der seit 2010 publizierten Arbeiten zur ICG-basierten FOI in der Diagnostik verschiedener entzündlich-rheumatischer Gelenkerkrankungen vorgestellt, ihr Einsatz im Therapiemonitoring erläutert als auch die Wertigkeit bei anderen Indikationen dargelegt.

Ergebnisse

Zusammenfassend haben die Studien die Genauigkeit der FOI in der Entzündungsdiagnostik ausgiebig gezeigt. Daraus kann abgeleitet werden, dass die FOI eine gute Ergänzung zu den bisherigen Bildgebungsverfahren ist. Aufgrund charakteristischer Muster sowohl der Haut als auch der Nägel ist die FOI vor allem bei der Psoriasisarthritis ein indiziertes Verfahren und kann hier sehr hilfreich im diagnostischen Prozess bei früher undifferenzierter Arthritis sein. Die FOI hat ihren Nutzen bei Kindern (juvenile idiopathische Arthritis), zur Therapieverlaufskontrolle und beim Einsatz von Patienten mit systemischer Sklerose gezeigt.

Schlussfolgerung

Die vorliegenden Daten implizieren, dass die FOI als wertvolle ergänzende Bildgebung im diagnostischen Algorithmus in der täglichen rheumatologischen Praxis anzusehen ist – sowohl bei der Diagnosestellung als auch zum Verlaufsmonitoring. Insbesondere zukünftig durchführbare automatisierte Analysen lassen sowohl auf objektive Messungen der Entzündungsaktivität als auch zum Monitoren des Therapieansprechens hoffen.

Abstract

Background

The novel technique of indocyanine green (ICG)-based fluorescence optical imaging (FOI) using the Xiralite® system (Rheumascan) has been the subject of many different studies worldwide since approval for clinical use in the European Union (2009), USA (2014) and Asia. The FOI depicts the disturbed microcirculation in the joints of both hands caused by inflammation.

Objective

The aim of this article is to provide an overview of the current state of studies on ICG-based FOI in different rheumatologic indications.

Methods

A narrative literature review of publications on ICG-based FOI in the diagnosis of various inflammatory rheumatic joint diseases since 2010 is presented, its use in treatment monitoring is explained, and its value in systemic sclerosis is outlined.

Results

In summary, studies have extensively demonstrated the accuracy of FOI in inflammation detection. Therefore, it can be concluded that FOI is a good supplement to existing imaging modalities. Due to characteristic patterns of both skin and nails, FOI is an indicated procedure especially in psoriatic arthritis and can be very helpful in the diagnostic process in early undifferentiated arthritis. The FOI has shown its usefulness in children (juvenile idiopathic arthritis), for monitoring the course of treatment, and for demonstrating disturbed microcirculation in patients with systemic sclerosis.

Conclusion

The presented data imply that FOI should be considered as a valuable complementary imaging tool in the diagnostic algorithm of daily rheumatologic practice, both for diagnosis and for follow-up monitoring. In particular, the automated analyses should be able in the future to objectify measurements of inflammatory activity as well as monitoring the response to treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Cherrick GR, Stein SW, Leevy CM et al (1960) Indocyanine green: observations on its physical properties, plasma decay, and hepatic extraction. J Clin Invest 39:592–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fischer T, Gemeinhardt I, Wagner S et al (2006) Assessment of unspecific near-infrared dyes in laser-induced fluorescence imaging of experimental arthritis. Acad Radiol 13(1):4–13

  3. Meier R, Krug C, Golovko D (2010) ICG-enhanced imaging of arthritis with an integrated optical Imaging/X-ray system. Arthritis Rheum 62:2322–2327

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vollmer S, Gemeinhardt I, Vater A et al (2014) In vivo therapy monitoring of experimental rheumatoid arthritis in rats using near-infrared fluorescence imaging. J Biomed Opt 19:36011–36017

    Article  Google Scholar 

  5. Fischer T, Ebert B, Voigt J et al (2010) Detection of rheumatoid arthritis using non-specific contrast enhanced fluorescence imaging. Acad Radiol 17:375–381

    Article  PubMed  Google Scholar 

  6. Werner SG, Langer H‑E, Ohrndorf S et al (2012) Inflammation assessment in patients with arthritis using a novel in vivo fluorescence optical imaging technology. Ann Rheum Dis 71:504–510

    Article  PubMed  Google Scholar 

  7. Werner SG, Langer H‑E, Schott P et al (2013) Indocyanine green-enhanced fluorescence optical imaging in patients with early and very early arthritis: a comparative study with magnetic resonance imaging. Arthritis Rheum 65:3036–3044

    Article  CAS  PubMed  Google Scholar 

  8. Meier R, Thürmel K, Moog P et al (2012) Detection of synovitis in the hands of patients with rheumatologic disorders: diagnostic performance of optical imaging in comparison with magnetic resonance imaging. Arthritis Rheum 64:2489–2498

    Article  PubMed  Google Scholar 

  9. Krohn M, Ohrndorf S, Werner SG et al (2015) Near-Infrared fluorescence optical imaging in early rheumatoid arthritis: a comparison to magnetic resonance imaging and ultrasonography. J Rheumatol 42:1112–1118

    Article  CAS  PubMed  Google Scholar 

  10. Thuermel K, Neumann J, Jungmann PM et al (2017) Fluorescence optical imaging and 3T-MRI for detection of synovitis in patients with rheumatoid arthritis in comparison to a composite standard of reference. Eur J Radiol 90:6–13

    Article  PubMed  Google Scholar 

  11. Hirano F, Yokoyama-Kokuryo W, Yamazaki H et al (2018) Comparison, of fluorescence optical imaging, ultrasonography and clinical examination with magnetic resonance imaging as a reference inactive rheumatoid arthritis patients. Immunol Med 41:75–81

    Article  PubMed  Google Scholar 

  12. Ammitzbøll-Danielsen M, Glinatsi D, Terslev L et al (2021) A Novel, Fluorescence Optical Imaging Scoring System for Hand Synovitis, in Rheumatoid Arthritis—validity and agreement with ultrasound. Rheumatology (Oxford) 61(2):636–647

  13. Kisten Y, Györi N, Af Klint E et al (2015) Detection of clinically manifest and silent synovitis in the hands and wrists by fluorescence optical imaging. Rmd Open 1:e106

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kawashiri SY, Nishino A, Shimizu T et al (2020) Fluorescence optical imaging in patients with active rheumatoid arthritis: a comparison with ultrasound and an association with biomarkers. Scand J Rheumatol 21:1–9

    Google Scholar 

  15. Erdmann-Keding M, Ohrndorf S, Werner SG et al (2019) Fluorescence optical imaging for the detection of potential psoriatic arthritis in comparison to musculoskeletal ultrasound. J Dtsch Dermatol Ges 17:913–921

    Article  PubMed  Google Scholar 

  16. Wiemann O, Werner SG, Langer HE, Backhaus M, Chatelain R (2019) Phänomen „grüner Nagel“ in der ICG-gestützten fluoreszenzoptischen Bildgebung – ein möglicher differenzialdiagnostischer Hinweis auf Psoriasisarthritis. J Dtsch Dermatol Ges 17(2):138–148

    PubMed  Google Scholar 

  17. Büttner J, Glimm AM, Kokolakis G, Erdmann-Keding M, Burmester GR, Hoff P, Klotsche J, Ohrndorf S (2022) Follow-up comparison of fluorescence optical imaging with musculoskeletal ultrasound for early detection of Psoriatic arthritis. Front Med (lausanne) 18(9):845545

    Article  Google Scholar 

  18. Köhm M, Zerweck L, Ngyuen PH, Burkhardt H, Behrens F (2020) Innovative imaging technique for visualization of vascularization and established methods for detection of musculoskeletal inflammation in psoriasis patients. Front Med (lausanne) 7:468

    Article  PubMed  Google Scholar 

  19. Koehm M, Ohrndorf S, Foldenauer AC, Rossmanith T, Backhaus M, Werner SG, Burmester GR, Wassenberg S, Koehler B, Burkhardt H, Behrens F (2022) Fluorescence-optical imaging as a promising easy-to-use imaging biomarker to increase early psoriatic arthritis detection in patients with psoriasis: a cross-sectional cohort study with follow-up. Rmd Open 12(2):8–e2682

    Google Scholar 

  20. Werner SG, Langer HE, Horneff G (2011) Fluorescence optical imaging of juvenile arthritis. J Rheumatol 38(7):1447

    Article  PubMed  Google Scholar 

  21. Klein A, Just GW, Werner SG, Oommen PT, Minden K, Becker I, Langer HE, Klee D, Horneff G (2017) Fluorescence optical imaging and musculoskeletal ultrasonography in juvenile idiopathic polyarticular disease before and during antirheumatic treatment—a multicenter non-interventional diagnostic evaluation. Arthritis Res Ther 19(1):147

    Article  PubMed  PubMed Central  Google Scholar 

  22. Beck MC, Glimm A‑M, Ohrndorf S et al (2017) Fluorescence optical imaging in pediatric patients with inflammatory and non-inflammatory joint diseases: a comparative study with ultrasonography. Arthritis Res Ther S. 19:233

    Article  PubMed  Google Scholar 

  23. Hertrampf S, Klotsche J, Schefer Q, Glimm AM, Burmester GR, Hoff P, Schmittat G, Häupl T, Hermann S, Backhaus M, Ohrndorf S (2022) Monitoring of patients with rheumatoid arthritis by indocyanine green (ICG)-enhanced fluorescence optical imaging treated with anti-TNFα therapy. Arthritis Res Ther 24(1):117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Glimm A‑M, Sprenger LI, Haugen IK et al (2019) Fluorescence optical imaging for treatment monitoring in patients with early and active rheumatoid arthritis in a 1-year follow-up period. Arthritis Res Ther 21:209

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ridha Ali SL, Glimm AM, Burmester GR, Hoff P, Schmittat G, Hermann S, Backhaus M, Klotsche J, Ohrndorf S (2021) Is the fluorescence optical imaging (FOI) able to discriminate between rheumatoid arthritis patients with and without need of rituximab retherapy? A cohort study. BMJ Open 11(8):e047713

    Google Scholar 

  26. Schmidt A, Glimm AM, Haugen IK et al (2020) Detection of subclinical skin manifestation in patients with psoriasis and psoriatic arthritis by fluorescence optical imaging. Arthritis Res Ther 22:192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pfeil A, Drummer KF, Böttcher J et al (2015) The application of fluorescence optical imaging in systemic sclerosis. Biomed Res Int S. 2015:1–6

    Article  Google Scholar 

  28. Friedrich S, Lüders S, Werner SG et al (2017) Disturbed microcirculation in the hands of patients with systemic sclerosis detected by fluorescence optical imaging: a pilot study. Arthritis Res Ther 19:87

    Article  PubMed  PubMed Central  Google Scholar 

  29. Friedrich S, Lüders S, Glimm AM et al (2019) Association between baseline clinical and imaging findings and the development of digital ulcers in patients with systemic sclerosis. Arthritis Res Ther 21:96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Glimm A‑M, Werner SG, Burmester GR et al (2016) Analysis of distribution and severity of inflammation in patients with osteoarthitis compared to rheumatoid arthritis by ICG-enhanced fluorescence optical imaging and musculoskeletal ultrasound: a pilot study. Ann Rheum Dis 75:566–570

    Article  CAS  PubMed  Google Scholar 

  31. Maugesten Ø, Mathiessen A, Hammer HB et al (2020) Validity and diagnostic performance of fluorescence optical imaging measuring synovitis in hand osteoarthritis: baseline results from the Nor-Hand cohort. Arthritis Res Ther 22:98

    Article  PubMed  PubMed Central  Google Scholar 

  32. Maugesten Ø, Ohrndorf S, Slatkowsky-Christensen B et al (2021) Associations between fluorescence optical imaging and magnetic resonance imaging and symptoms in hand osteoarthritis. Rheumatology (Oxford) 61(2):764–769

  33. Maugesten Ø, Ohrndorf S, Glinatsi D et al (2020) Evaluation of three scoring methods for fluorescence optical imaging in erosive hand osteoarthritis and rheumatoid arthritis. Osteoarthr Cartil Open 1:100017

    Article  CAS  PubMed  Google Scholar 

  34. Schäfer VS, Hartung W, Hoffstetter P et al (2013) Quantitative assessment of synovitis in patients with rheumatoid arthritis using fluorescence optical imaging. Arthritis Res Ther 15:R124

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zerweck L, Köhm M, Nguyen PH, Geißlinger G, Behrens F, Pippow A (2022) An objective, automated and robust scoring using fluorescence optical imaging to evaluate changes in micro-vascularisation indicating early arthritis. PLoS One 27 17(9):e0274593

  36. Gedat E, Berger J, Kiesel D, Failli V, Briel A, Welker P (2022) Features found in Indocyanine green-based fluorescence optical imaging of inflammatory diseases of the hands. Diagnostics (basel) 12(8):1775

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Ohrndorf.

Ethics declarations

Interessenkonflikt

S.G. Werner, M. Backhaus und S. Ohrndorf geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autorinnen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Paula Hoff, Berlin

Sarah Ohrndorf, Berlin

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werner, S.G., Backhaus, M. & Ohrndorf, S. Ist Rheuma scanbar?. Z Rheumatol 82, 627–637 (2023). https://doi.org/10.1007/s00393-023-01404-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-023-01404-8

Schlüsselwörter

Keywords

Navigation