Skip to main content
Log in

Diastolic pressure–volume quotient (DPVQ) as a novel echocardiographic index for estimation of LV stiffness in HFpEF

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

End-diastolic pressure–volume relationship and LV stiffness, key parameter for diagnosing diastolic dysfunction within Heart failure with preserved ejection fraction (HFpEF) patients, can be directly obtained only by invasive pressure–volume (PV) measurements. Therefore, we aimed to establish diastolic pressure–volume quotient (DPVQ), as a new non-invasive parameter for estimation of LV stiffness in HFpEF obtained by 3D echocardiography (3DE) and tissue Doppler imaging.

Methods

Twenty-three HFpEF patients with suspected diastolic dysfunction, scheduled for invasive pressure–volume loop analyses obtained by conductance catheterization were included. PV loop measurements were compared with simultaneous 3DE full-volume recordings of the LV and tissue Doppler measurements for LV diastolic function. LV filling index E/E′ was used for estimation of diastolic pressure. Single-beat method was performed to calculate LV stiffness constant (β SB).

Results

Fourteen of twenty-three patients showed increased and 9/23 revealed normal LV stiffness β. End-diastolic, end-systolic and stroke volume obtained by 3DE correlated with those from PV loop analysis (r = 0.63, r = 0.57 and r = 0.71, respectively). Estimated diastolic pressure and DPVQ correlated with invasive measurements (r = 0.81 and r = 0.91, both p < 0.001). Accordingly, calculated stiffness constant β SB revealed a significant correlation with invasive determined stiffness coefficient β (r = 0.73, p < 0.001). DPVQ and β SB correlated with NT-proBNP plasma level (r = 0.67 and r = 0.58, both, p < 0.001).

Conclusion

3D echocardiography allows accurate non-invasive measurements of diastolic pressure–volume quotient which correlates with invasive determined LV stiffness in HFpEF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM (2006) Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355:251–259

    Article  CAS  PubMed  Google Scholar 

  2. Zile MR, Baicu CF, Gaasch WH (2004) Diastolic heart failure—abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med 350:1953–1959

    Article  CAS  PubMed  Google Scholar 

  3. Kitzman DW, Little WC, Brubaker PH, Anderson RT, Hundley WG, Marburger CT, Brosnihan B, Morgan TM, Stewart KP (2002) Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure. JAMA 288:2144–2150

    Article  PubMed  Google Scholar 

  4. Goto K, Mikami T, Onozuka H, Kaga S, Inoue M, Komatsu H, Komuro K, Yamada S, Tsutsui H, Kitabatake A (2006) Role of left ventricular regional diastolic abnormalities for global diastolic dysfunction in patients with hypertrophic cardiomyopathy. J Am Soc Echocardiogr 19:857–864

    Article  PubMed  Google Scholar 

  5. Bhatia RS, Tu JV, Lee DS, Austin PC, Fang J, Haouzi A, Gong Y, Liu PP (2006) Outcome of heart failure with preserved ejection fraction in a population-based study. N Engl J Med 355:260–269

    Article  CAS  PubMed  Google Scholar 

  6. Sanderson JE (2007) Heart failure with a normal ejection fraction. Heart Br CardiacSoc 93:155–158

    Article  CAS  Google Scholar 

  7. van Heerebeek L, Borbely A, Niessen HW, Bronzwaer JG, van der Velden J, Stienen GJ, Linke WA, Laarman GJ, Paulus WJ (2006) Myocardial structure and function differ in systolic and diastolic heart failure. Circulation 113:1966–1973

    Article  PubMed  Google Scholar 

  8. Nucifora G, Badano LP, Dall’Armellina E, Gianfagna P, Allocca G, Fioretti PM (2009) Fast data acquisition and analysis with real time triplane echocardiography for the assessment of left ventricular size and function: a validation study. Echocardiography Mt Kisco NY 26:66–75

    Article  Google Scholar 

  9. Pouleur AC, le Polain de Waroux JB, Pasquet A, Gerber BL, Gerard O, Allain P, Vanoverschelde JL (2008) Assessment of left ventricular mass and volumes by three-dimensional echocardiography in patients with or without wall motion abnormalities: comparison against cine magnetic resonance imaging. Heart Br Cardiac Soc 94:1050–1057

  10. Hoole SP, Boyd J, Ninios V, Parameshwar J, Rusk RA (2008) Measurement of cardiac output by real-time 3D echocardiography in patients undergoing assessment for cardiac transplantation. Eur J Echocardiogr 9:334–337

    Article  PubMed  Google Scholar 

  11. Hare JL, Jenkins C, Nakatani S, Ogawa A, Yu CM, Marwick TH (2008) Feasibility and clinical decision-making with 3D echocardiography in routine practice. Heart Br Cardiac Soc 94:440–445

    Article  CAS  Google Scholar 

  12. Jenkins C, Leano R, Chan J, Marwick TH (2007) Reconstructed versus real-time 3-dimensional echocardiography: comparison with magnetic resonance imaging. J Am Soc Echocardiogr 20:862–868

    Article  PubMed  Google Scholar 

  13. Burgess MI, Jenkins C, Sharman JE, Marwick TH (2006) Diastolic stress echocardiography: hemodynamic validation and clinical significance of estimation of ventricular filling pressure with exercise. J Am Coll Cardiol 47:1891–1900

    Article  PubMed  Google Scholar 

  14. Tan YT, Wenzelburger F, Lee E, Heatlie G, Leyva F, Patel K, Frenneaux M, Sanderson JE (2009) The pathophysiology of heart failure with normal ejection fraction: exercise echocardiography reveals complex abnormalities of both systolic and diastolic ventricular function involving torsion, untwist, and longitudinal motion. J Am Coll Cardiol 54:36–46

    Article  PubMed  Google Scholar 

  15. Burkhoff D, Mirsky I, Suga H (2005) Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am J Physiol 289:H501–H512

    CAS  Google Scholar 

  16. Tschope C, Kasner M, Westermann D, Gaub R, Poller WC, Schultheiss HP (2005) The role of NT-proBNP in the diagnostics of isolated diastolic dysfunction: correlation with echocardiographic and invasive measurements. Eur Heart J 26:2277–2284

    Article  PubMed  Google Scholar 

  17. Kasner M, Westermann D, Steendijk P, Gaub R, Wilkenshoff U, Weitmann K, Hoffmann W, Poller W, Schultheiss HP, Pauschinger M, Tschope C (2007) Utility of Doppler echocardiography and tissue Doppler imaging in the estimation of diastolic function in heart failure with normal ejection fraction: a comparative Doppler-conductance catheterization study. Circulation 116:637–647

    Article  PubMed  Google Scholar 

  18. Westermann D, Kasner M, Steendijk P, Spillmann F, Riad A, Weitmann K, Hoffmann W, Poller W, Pauschinger M, Schultheiss HP, Tschope C (2008) Role of left ventricular stiffness in heart failure with normal ejection fraction. Circulation 117:2051–2060

    Article  PubMed  Google Scholar 

  19. Gaasch WH, Little WC (2007) Assessment of left ventricular diastolic function and recognition of diastolic heart failure. Circulation 116:591–593

    Article  PubMed  Google Scholar 

  20. Devereux RB, Reichek N (1977) Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation. 55:613–618

    Article  CAS  PubMed  Google Scholar 

  21. Murray JA, Kennedy JW, Figley MM (1968) Quantitative angiocardiography. II. The normal left atrial volume in man. Circulation 37:800–804

    Article  CAS  PubMed  Google Scholar 

  22. Klotz S, Hay I, Dickstein ML, Yi GH, Wang J, Maurer MS, Kass DA, Burkhoff D (2006) Single-beat estimation of end-diastolic pressure-volume relationship: a novel method with potential for noninvasive application. Am J Physiol 291:H403–H412

    CAS  Google Scholar 

  23. Ten Brinke EA, Burkhoff D, Klautz RJ, Tschope C, Schalij MJ, Bax JJ, van der Wall EE, Dion RA, Steendijk P Single-beat estimation of the left ventricular end-diastolic pressure-volume relationship in patients with heart failure. Heart Br Cardiac Soc 96:213–219

  24. Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, Tajik AJ (2000) Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 102:1788–1794

    Article  CAS  PubMed  Google Scholar 

  25. Hillis GS, Moller JE, Pellikka PA, Gersh BJ, Wright RS, Ommen SR, Reeder GS, Oh JK (2004) Noninvasive estimation of left ventricular filling pressure by E/e’ is a powerful predictor of survival after acute myocardial infarction. J Am Coll Cardiol 43:360–367

    Article  PubMed  Google Scholar 

  26. Dokainish H, Zoghbi WA, Lakkis NM, Al-Bakshy F, Dhir M, Quinones MA, Nagueh SF (2004) Optimal noninvasive assessment of left ventricular filling pressures: a comparison of tissue Doppler echocardiography and B-type natriuretic peptide in patients with pulmonary artery catheters. Circulation 109:2432–2439

    Article  PubMed  Google Scholar 

  27. Hummel YM, Klip IT, de Jong RM, Pieper PG, van Veldhuisen DJ, Voors AA (2010) Diastolic function measurements and diagnostic consequences: a comparison of pulsed wave- and color-coded tissue Doppler imaging. Clin Res Cardiol 99(7):453–458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Tschope C, Westermann D (2009) Heart failure with normal ejection fraction. Pathophysiology, diagnosis, and treatment. Herz 34:89–96

    Article  PubMed  Google Scholar 

  29. Mor-Avi V, Sugeng L, Weinert L, MacEneaney P, Caiani EG, Koch R, Salgo IS, Lang RM (2004) Fast measurement of left ventricular mass with real-time three- dimensional echocardiography: comparison with magnetic resonance imaging. Circulation 110:1814–1818

    Article  PubMed  Google Scholar 

  30. Herberg U, Gatzweiler E, Breuer T, Breuer J (2013) Ventricular pressure-volume loops obtained by 3D real-time echocardiography and mini pressure wire—a feasibility study. Clin Res Cardiol 102(6):427–438

    Article  PubMed  Google Scholar 

  31. Nikitin NP, Constantin C, Loh PH, Ghosh J, Lukaschuk EI, Bennett A, Hurren S, Alamgir F, Clark AL, Cleland JG (2006) New generation 3-dimensional echocardiography for left ventricular volumetric and functional measurements: comparison with cardiac magnetic resonance. Eur J Echocardiogr 7:365–372

    Article  PubMed  Google Scholar 

  32. Jacobs LD, Salgo IS, Goonewardena S, Weinert L, Coon P, Bardo D, Gerard O, Allain P, Zamorano JL, de Isla LP, Mor-Avi V, Lang RM (2006) Rapid online quantification of left ventricular volume from real-time three-dimensional echocardiographic data. Eur Heart J 27:460–468

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was granted by the European Association of Echocardiography/European society of Cardiology to MK and by the EC, FP7-Health-2010, MEDIA (261409) to CT.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Kasner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasner, M., Sinning, D., Burkhoff, D. et al. Diastolic pressure–volume quotient (DPVQ) as a novel echocardiographic index for estimation of LV stiffness in HFpEF. Clin Res Cardiol 104, 955–963 (2015). https://doi.org/10.1007/s00392-015-0863-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-015-0863-y

Keywords

Navigation