Skip to main content
Log in

Colonoscopy as a tool for evaluating colorectal tumor development in a mouse model

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Purpose

A sporadic colon cancer mouse model with conditional mutations in adenomatous polyposis coli (Apc) is biologically relevant for human colorectal cancer (CRC). This study aimed to determine the utility and limitations of colonoscopy for evaluating colon tumors in this mouse model.

Methods

We compared the estimates of location, size, and miss rate of tumors detected during colonoscopy with those determined by necropsy. Sixty-six CPC-Apc mice originating from Apc F/wt mice harbor a Cdx2-Cre transgene in which colorectal tumorigenesis was driven by Apc allelic loss. The sensitivity and specificity of colonoscopy for detecting tumors in a mouse CRC model were investigated.

Results

A strong positive correlation was found between tumor location as measured by colonoscopy and the location determined by necropsy (p < 0.001). A total of 120 tumors were graded during colonoscopy (grades 1–5: 0, 8, 20, 27, and 65 lesions, respectively), and a strong positive correlation was found between the tumor grade determined by colonoscopy and size measured by necropsy (grades 2–5: 2.08, 2.98, 4.02, and 5.09 mm, respectively; p < 0.005). Although the miss rate was 47.1 %, most of the missed tumors (96 %) were in close proximity (within 5 mm) of another tumor.

Conclusions

A colonoscopic method for the reliable measurement of colorectal tumors in vivo has been established. The application of this technique to mouse models of colon carcinogenesis will provide a better understanding of the dynamics of tumor growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87(2):159–170

    Article  CAS  PubMed  Google Scholar 

  2. Arnold CN, Goel A, Blum HE, Richard Boland C (2005) Molecular pathogenesis of colorectal cancer. Cancer 104(10):2035–2047

    Article  CAS  PubMed  Google Scholar 

  3. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61(5):759–767

    Article  CAS  PubMed  Google Scholar 

  4. Powell SM, Petersen GM, Krush AJ, Booker S, Jen J, Giardiello FM, Hamilton SR, Vogelstein B, Kinzler KW (1993) Molecular diagnosis of familial adenomatous polyposis. N Engl J Med 329(27):1982–1987

    Article  CAS  PubMed  Google Scholar 

  5. Moser AR, Luongo C, Gould KA, McNeley MK, Shoemaker AR, Dove WF (1995) ApcMin: a mouse model for intestinal and mammary tumorigenesis. Eur J Cancer 31A(7–8):1061–1064

    Article  CAS  PubMed  Google Scholar 

  6. Shoemaker AR, Gould KA, Luongo C, Moser AR, Dove WF (1997) Studies of neoplasia in the Min mouse. Biochim Biophys Acta 1332(2):F25–F48

    CAS  PubMed  Google Scholar 

  7. Hinoi T, Loda M, Fearon ER (2003) Silencing of CDX2 expression in colon cancer via a dominant repression pathway. J Biol Chem 278(45):44608–44616

    Article  CAS  PubMed  Google Scholar 

  8. Hinoi T, Akyol A, Theisen BK, Ferguson DO, Greenson JK, Williams BO, Cho KR, Fearon ER (2007) Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res 67(20):9721–9730

    Article  CAS  PubMed  Google Scholar 

  9. Winawer SJ, Stewart ET, Zauber AG, Bond JH, Ansel H, Waye JD, Hall D, Hamlin JA, Schapiro M, O’Brien MJ, Sternberg SS, Gottlieb LS (2000) A comparison of colonoscopy and double-contrast barium enema for surveillance after polypectomy. N Engl J Med 342(24):1766–1772

    Article  CAS  PubMed  Google Scholar 

  10. Gollub MJ, Schwartz LH, Akhurst T (2007) Update on colorectal cancer imaging. Radiol Clin N Am 45(1):85–118

    Article  PubMed  Google Scholar 

  11. Kuipers EJ, Rösch T, Bretthauer M (2013) Colorectal cancer screening—optimizing current strategies and new directions. Nat Rev Clin Oncol 10:130–142

    Article  CAS  PubMed  Google Scholar 

  12. Ahn SB, Han DS, Bae JH, Byun TJ, Kim JP, Eun CS (2012) The miss rate for colorectal adenoma determined by quality-adjusted, back-to-back colonoscopies. Gut Liver 6(1):64–70

    Article  PubMed Central  PubMed  Google Scholar 

  13. Bond JH (2003) Colon polyps and cancer. Endoscopy 35(01):27–35

    Article  CAS  PubMed  Google Scholar 

  14. Postic G, Lewin D, Bickerstaff C, Wallace MB (2002) Colonoscopic miss rates determined by direct comparison of colonoscopy with colon resection specimens. Am J Gastroenterol 97(12):3182–3185

    Article  PubMed  Google Scholar 

  15. Van Rijn JC, Reitsma JB, Stoker J, Bossuyt PM, van Deventer SJ, Dekker E (2006) Polyp miss rate determined by tandem colonoscopy: a systematic review. Am J Gastroenterol 101(2):343–350

    Article  PubMed  Google Scholar 

  16. Funovics MA, Alencar H, Montet X, Weissleder R, Mahmood U (2006) Simultaneous fluorescence imaging of protease expression and vascularity during murine colonoscopy for colonic lesion characterization. Gastrointest Endosc 64(4):589–597

    Article  PubMed  Google Scholar 

  17. Funovics MA, Alencar H, Su HS, Khazaie K, Weissleder R, Mahmood U (2003) Miniaturized multichannel near infrared endoscope for mouse imaging. Mol Imaging 2(4):350–357

    Article  PubMed  Google Scholar 

  18. Durkee BY, Shinki K, Newton MA, Iverson CE, Weichert JP, Dove WF, Halberg RB (2009) Longitudinal assessment of colonic tumor fate in mice by computed tomography and optical colonoscopy. Acad Radiol 16(12):1475–1482

    Article  PubMed Central  PubMed  Google Scholar 

  19. Quarles CC, Lepage M, Gorden DL, Fingleton B, Yankeelov TE, Price RR, Matrisian LM, Gore JC, McIntyre JO (2008) Functional colonography of Min mice using dark lumen dynamic contrast-enhanced MRI. Magn Reson Med 60(3):718–726

    Article  PubMed Central  PubMed  Google Scholar 

  20. Becker C, Fantini MC, Neurath MF (2007) High resolution colonoscopy in live mice. Nat Protoc 1(6):2900–2904

    Article  Google Scholar 

  21. Huang EH, Carter JJ, Whelan RL, Liu YH, Rosenberg JO, Rotterdam H, Schmidt AM, Stern DM, Forde KA (2002) Colonoscopy in mice. Surg Endosc 16(1):22–24

    Article  CAS  PubMed  Google Scholar 

  22. Hensley HH, Merkel CE, Chang W-CL, Devarajan K, Cooper HS, Clapper ML (2009) Endoscopic imaging and size estimation of colorectal adenomas in the multiple intestinal neoplasia mouse. Gastrointest Endosc 69(3):742–749

    Article  PubMed Central  PubMed  Google Scholar 

  23. Hensley HH, Chang WC, Clapper ML (2004) Detection and volume determination of colonic tumors in Min mice by magnetic resonance micro-imaging. Magn Reson Med 52(3):524–529

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank the Nature Science Center for Basic Research and Development for this study and the Laboratory Animal Facility at Hiroshima University for maintaining the animals. Special thanks to Yuusuke Sotomaru, PhD and Tatsunari Sasada, MD for maintaining the animals and Minoru Hattori, PhD for statistical support.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Hinoi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adachi, T., Hinoi, T., Sasaki, Y. et al. Colonoscopy as a tool for evaluating colorectal tumor development in a mouse model. Int J Colorectal Dis 29, 217–223 (2014). https://doi.org/10.1007/s00384-013-1791-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-013-1791-9

Keywords

Navigation