Skip to main content

Advertisement

Log in

Frequency of infiltrating regulatory T-cells in the portal tract of biliary atresia

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

Immunological abnormalities have been hypothesized as a pathogenesis of biliary atresia (BA). We previously investigated the frequency and function of circulating regulatory T-cells (Tregs) and reported no differences compared to controls. However, the local Treg profile remains uncertain. We aimed to investigate the frequency of Tregs in BA liver tissues.

Methods

The number of lymphocytes, CD4+ cells, and CD4+FOXP3+ Tregs infiltrating the portal tract and the percentage of Tregs among CD4+ cells of BA and control patients were visually counted. The correlation between these data and clinical indicators was also examined.

Results

The number of lymphocytes, CD4+ cells, and CD4+FOXP3+ Tregs was higher in the BA group. However, the percentage of Tregs among CD4+ cells was similar in both groups. Each parameter was correlated with serum γ-GTP, but there was no clear association with liver fibrosis, jaundice clearance, and native liver survival.

Conclusion

The number of Tregs infiltrating the portal tract was higher in BA patients. However, the infiltration of lymphocytes was also generally increased. Tregs appear to be unsuccessful in suppressing progressive inflammation in BA patients, despite recruitment to local sites. Investigation of Treg function in the local environment is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Bezerra JA, Wells RG, Mack CL et al (2018) Biliary atresia: clinical and research challenges for the twenty-first century. Hepatology 68:1163–1173. https://doi.org/10.1002/hep.29905

    Article  PubMed  Google Scholar 

  2. Chardot C (2006) Biliary atresia. Orphanet J Rare Dis 1:28. https://doi.org/10.1186/1750-1172-1-28

    Article  PubMed  PubMed Central  Google Scholar 

  3. Asai A, Miethke A, Bezerra JA (2015) Pathogenesis of biliary atresia: defining biology to understand clinical phenotypes. Nat Rev Gastroenterol Hepatol 12:342–352. https://doi.org/10.1038/nrgastro.2015.74

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nizery L, Chardot C, Sissaoui S et al (2016) Biliary atresia: clinical advances and perspectives. Clin Res Hepatol Gastroenterol 40:281–287. https://doi.org/10.1016/j.clinre.2015.11.010

    Article  PubMed  Google Scholar 

  5. Nio M (2017) Japanese biliary atresia registry. Pediatr Surg Int 33:1319–1325. https://doi.org/10.1007/s00383-017-4160-x

    Article  PubMed  Google Scholar 

  6. Mack CL, Feldman AG, Sokol RJ (2012) Clues to the etiology of bile duct injury in biliary atresia. Semin Liver Dis 32:307–316. https://doi.org/10.1055/s-0032-1329899

    Article  CAS  PubMed  Google Scholar 

  7. Sokol RJ, Mack C, Narkewicz MR, Karrer FM (2003) Pathogenesis and outcome of biliary atresia: current concepts. J Pediatr Gastroenterol Nutr 37:4–21. https://doi.org/10.1097/00005176-200307000-00003

    Article  PubMed  Google Scholar 

  8. Hartley JL, Davenport M, Kelly DA (2009) Biliary atresia. Lancet 374:1704–1713. https://doi.org/10.1016/S0140-6736(09)60946-6

    Article  PubMed  Google Scholar 

  9. Wang J, Xu Y, Chen Z et al (2020) Liver immune profiling reveals pathogenesis and therapeutics for biliary atresia. Cell 183:1867-1883.e26. https://doi.org/10.1016/j.cell.2020.10.048

    Article  CAS  PubMed  Google Scholar 

  10. Lakshminarayanan B, Davenport M (2016) Biliary atresia: a comprehensive review. J Autoimmun 73:1–9. https://doi.org/10.1016/j.jaut.2016.06.005

    Article  PubMed  Google Scholar 

  11. Wing JB, Sakaguchi S (2012) Multiple treg suppressive modules and their adaptability. Front Immunol 3:178. https://doi.org/10.3389/fimmu.2012.00178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grant CR, Liberal R, Mieli-Vergani G et al (2015) Regulatory T-cells in autoimmune diseases: challenges, controversies and—yet—unanswered questions. Autoimmun Rev 14:105–116. https://doi.org/10.1016/j.autrev.2014.10.012

    Article  CAS  PubMed  Google Scholar 

  13. Sakaguchi S, Mikami N, Wing JB et al (2020) Regulatory T cells and human disease. Annu Rev Immunol 38:541–566. https://doi.org/10.1146/annurev-immunol-042718-041717

    Article  CAS  PubMed  Google Scholar 

  14. Miethke AG, Saxena V, Shivakumar P et al (2010) Post-natal paucity of regulatory T cells and control of NK cell activation in experimental biliary atresia. J Hepatol 52:718–726. https://doi.org/10.1016/j.jhep.2009.12.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lages CS, Simmons J, Chougnet CA, Miethke AG (2012) Regulatory T cells control the CD8 adaptive immune response at the time of ductal obstruction in experimental biliary atresia. Hepatology 56:219–227. https://doi.org/10.1002/hep.25662

    Article  CAS  PubMed  Google Scholar 

  16. Tucker RM, Feldman AG, Fenner EK, Mack CL (2013) Regulatory T cells inhibit Th1 cell-mediated bile duct injury in murine biliary atresia. J Hepatol 59:790–796. https://doi.org/10.1016/j.jhep.2013.05.010

    Article  CAS  PubMed  Google Scholar 

  17. Li K, Zhang X, Yang L et al (2016) Foxp3 promoter methylation impairs suppressive function of regulatory T cells in biliary atresia. Am J Physiol Gastrointest Liver Physiol 311:G989–G997. https://doi.org/10.1152/ajpgi.00032.2016

    Article  PubMed  Google Scholar 

  18. Yang Y, Liu Y-J, Tang S-T et al (2013) Elevated Th17 cells accompanied by decreased regulatory T cells and cytokine environment in infants with biliary atresia. Pediatr Surg Int 29:1249–1260. https://doi.org/10.1007/s00383-013-3421-6

    Article  PubMed  Google Scholar 

  19. Saito T, Sakamoto A, Hatano M et al (2017) Systemic and local cytokine profile in biliary atresia. Eur J Pediatr Surg 27:280–287. https://doi.org/10.1055/s-0036-1592136

    Article  PubMed  Google Scholar 

  20. Hang S, Paik D, Yao L et al (2019) Bile acid metabolites control TH17 and treg cell differentiation. Nature 576:143–148. https://doi.org/10.1038/s41586-019-1785-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Campbell C, McKenney PT, Konstantinovsky D et al (2020) Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581:475–479. https://doi.org/10.1038/s41586-020-2193-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Katz SC, Ryan K, Ahmed N et al (2011) Obstructive jaundice expands intrahepatic regulatory T cells, which impair liver T lymphocyte function but modulate liver cholestasis and fibrosis. J Immunol 187:1150–1156. https://doi.org/10.4049/jimmunol.1004077

    Article  CAS  PubMed  Google Scholar 

  23. Weerasooriya VS, White FV, Shepherd RW (2004) Hepatic fibrosis and survival in biliary atresia. J Pediatr 144:123–125

    Article  PubMed  Google Scholar 

  24. Longhi MS, Mieli-Vergani G, Vergani D (2021) Regulatory T cells in autoimmune hepatitis: an updated overview. J Autoimmun 119:102619. https://doi.org/10.1016/j.jaut.2021.102619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miyara M, Gorochov G, Ehrenstein M et al (2011) Human FoxP3+ regulatory T cells in systemic autoimmune diseases. Autoimmun Rev 10:744–755. https://doi.org/10.1016/j.autrev.2011.05.004

    Article  CAS  PubMed  Google Scholar 

  26. Dominguez-Villar M, Hafler DA (2018) Regulatory T cells in autoimmune disease. Nat Immunol 19:665–673. https://doi.org/10.1038/s41590-018-0120-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Long SA, Buckner JH (2011) CD4+FOXP3+ T regulatory cells in human autoimmunity: more than a numbers game. J Immunol 187:2061–2066. https://doi.org/10.4049/jimmunol.1003224

    Article  CAS  PubMed  Google Scholar 

  28. Friedman SL (2004) Mechanisms of disease: mechanisms of hepatic fibrosis and therapeutic implications. Nat Clin Pract Gastroenterol Hepatol 1:98–105. https://doi.org/10.1038/ncpgasthep0055

    Article  PubMed  Google Scholar 

  29. Ward SM, Fox BC, Brown PJ et al (2007) Quantification and localisation of FOXP3+ T lymphocytes and relation to hepatic inflammation during chronic HCV infection. J Hepatol 47:316–324. https://doi.org/10.1016/j.jhep.2007.03.023

    Article  CAS  PubMed  Google Scholar 

  30. Hill R, Quaglia A, Hussain M et al (2015) Th-17 cells infiltrate the liver in human biliary atresia and are related to surgical outcome. J Pediatr Surg 50:1297–1303. https://doi.org/10.1016/j.jpedsurg.2015.02.005

    Article  PubMed  Google Scholar 

  31. Zhang S, Gang X, Yang S et al (2021) The alterations in and the role of the Th17/Treg balance in metabolic diseases. Front Immunol 12:678355. https://doi.org/10.3389/fimmu.2021.678355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lourenço JD, Ito JT, de Martins MA et al (2021) Th17/Treg imbalance in chronic obstructive pulmonary disease: clinical and experimental evidence. Front Immunol 12:804919. https://doi.org/10.3389/fimmu.2021.804919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oita S, Saito T, Sakamoto A et al (2022) Frequency and function of circulating regulatory T-cells in biliary atresia. Pediatr Surg Int 39:23. https://doi.org/10.1007/s00383-022-05307-8

    Article  PubMed  Google Scholar 

  34. Mercadante ER, Lorenz UM (2016) Breaking free of control: how conventional T cells overcome regulatory T cell suppression. Front Immunol 7:193. https://doi.org/10.3389/fimmu.2016.00193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Buckner JH (2010) Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases. Nat Rev Immunol 10:849–859. https://doi.org/10.1038/nri2889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Takana Motoyoshi (K. I. Stainer, Inc.) for their technical assistance.

Funding

This work was supported by JSPS KAKENHI (Grant Numbers 15K10917 and 18K08535). None of the authors have any relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SO, TS; Methodology: SO, RH, J-II; Formal analysis and investigation: SO, RH, TF, YK; Writing—original draft preparation: SO; Writing—review and editing: KT, SK, AT, TH; Funding acquisition: TS; Supervision: J-II, TH. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Satoru Oita.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. This study was approved by the Ethics Committee of the Graduate School of Medicine, Chiba University (approval number 908) and the Institutional Review Board of Chiba Children’s Hospital (2017–046).

Consent to participate and publish

Informed consent was obtained from all participants (or their parents) in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

383_2023_5547_MOESM1_ESM.tiff

Online Resource 1: Correlation between fibrosis score and frequency of infiltrating cells to the portal tract (a) The number of lymphocytes/10,000 μm2 [mild (I): 26 ± 12; moderate (II): 34 ± 14; p = 0.22] (b) The mean number of CD4+ cells [mild (I): 11 ± 8.8; moderate (II): 2 4 ± 15; p = 0.05] (c) The mean number of CD4+FOXP3+ cells [mild (I): 3.2 ± 2.7; moderate (II): 8.0 ± 5.7; p = 0.05] (d) The percentage of Tregs among CD4+ cells (CD4+FOXP3+ Tregs/CD4+ cells) [mild (I): 0.30 ± 0.12; moderate (II): 0.32 ± 0.11; p = 0.66]. Supplementary file1 (TIFF 2209 KB)

383_2023_5547_MOESM2_ESM.tiff

Online Resource 2: Correlation between jaundice clearance and frequency of infiltrating cells to the portal tract (a) The number of lymphocytes/10,000μm2 (failed jaundice clearance: 30 ± 18; achieved jaundice clearance: 38 ± 11) (b) The mean number of CD4+ cells (failed: 31 ± 18; achieved: 25 ± 11) (c) The mean number of CD4+FOXP3+ cells (failed: 12±7.6; achieved: 7.4±3.7) (d) The percentage of Tregs among CD4+ cells (CD4+FOXP3+ Tregs/CD4+ cells) (failed: 0.37 ± 0.033; achieved: 0.30 ± 0.11). Supplementary file2 (TIFF 2313 KB)

383_2023_5547_MOESM3_ESM.tiff

Online Resource 3: Correlation between outcome at 3 years and frequency of infiltrating cells to the portal tract (a) The number of lymphocytes/10,000 μm2 [native liver: 35 ± 10; transplanted: 37 ± 18; p = 0.87] (b) The mean number of CD4+ cells [native liver: 21 ± 3.7; transplanted: 36 ± 16; p = 0.07] (c) The mean number of CD4+FOXP3+ cells [native liver: 6.2 ± 2.4; transplanted: 12 ± 5.5; p = 0.07] (d) The percentage of Tregs among CD4+ cells (CD4+FOXP3+ Tregs/CD4+ cells) [native liver: 0.30 ± 0.13; transplanted: 0.34 ± 0.051; p = 0.61]. Supplementary file3 (TIFF 2443 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oita, S., Saito, T., Hashimoto, R. et al. Frequency of infiltrating regulatory T-cells in the portal tract of biliary atresia. Pediatr Surg Int 39, 259 (2023). https://doi.org/10.1007/s00383-023-05547-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00383-023-05547-2

Keywords

Navigation