Skip to main content

Advertisement

Log in

The efficacy of robotic-assisted laparoscopic pyeloplasty for pediatric ureteropelvic junction obstruction: a systematic review and meta-analysis

  • Review
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

To evaluate the safety and effectiveness of robotic-assisted laparoscopic pyeloplasty (RALP) for treating pediatric ureteropelvic junction obstruction through an extensive comparison of RALP, open pyeloplasty (OP) and laparoscopic pyeloplasty (LP). We conducted a comprehensive search of the following databases: PubMed, Excerpta Medica Database, Cochrane Library, Web of Science database, China National Knowledge Infrastructure, WanFang Data, and China Biology Medical Disc. Baseline data were compared, the sources of heterogeneity were assessed, and publication biases were detected. This study was registered with PROSPERO (CRD42023415667). 26 studies with 6074 cases performing pyeloplasty were included, and the overall data are comparable. Our analysis showed no significant difference in success rate and postoperative complications between RALP and OP, and RALP is associated with a shorter length of stay (LOS) (MD − 1.00 95%CI − 1.45 to − 0.55, p < 0.0001). In addition, compared to LP, RALP was associated with a shorter anastomosis time (MD − 18.35 95%CI − 29.88 to − 6.82, p = 0.002) and fewer postoperative analgesics (MD − 0.09 95% CI − 0.18 to − 0.01, p = 0.03); however, RALP has a longer operative time (OT) (MD 52.39, 95% CI 39.75–65.03, p < 0.00001) and higher cost. The heterogeneity of OT may be influenced by factors, such as age and region, while the heterogeneity of LOS primarily stems from regional differences. No significant publication bias was detected. Our meta-analysis shows that RALP can be an alternative to OP and LP with a high success rate, minimal postoperative complications, and shorter LOS. In addition, RALP contributes to reduce anastomosis time and postoperative analgesic drugs. However, further well-designed, large-scale, randomized controlled trials with additional parameters are needed to conduct a more comprehensive analysis of heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contacting with the corresponding author.

References

  1. Nguyen HT, Kogan BA (1998) Upper urinary tract obstruction: experimental and clinical aspects. Br J Urol 81(Suppl 2):13–21. https://doi.org/10.1046/j.1464-410x.1998.0810s2013.x

    Article  PubMed  Google Scholar 

  2. Zhang J, Jia W, Fu W, Liu G, Zhang Q, Zhu S et al (2022) Color Doppler flow imaging for predicting the proteinuria following pyeloplasty for congenital ureteropelvic junction obstruction. Chin J Urol 43(12):920–924. https://doi.org/10.3760/cma.j.cn112330-20210602-00304

    Article  Google Scholar 

  3. Andolfi C, Lombardo AM, Aizen J, Recabal X, Walker JP, Barashi NS et al (2022) Laparoscopic and robotic pyeloplasty as minimally invasive alternatives to the open approach for the treatment of uretero-pelvic junction obstruction in infants: a multi-institutional comparison of outcomes and learning curves. World J Urol 40(4):1049–1056. https://doi.org/10.1007/s00345-022-03929-0

    Article  CAS  PubMed  Google Scholar 

  4. Boysen WR, Gundeti MS (2017) Robot-assisted laparoscopic pyeloplasty in the pediatric population: a review of technique, outcomes, complications, and special considerations in infants. Pediatr Surg Int 33(9):925–935. https://doi.org/10.1007/s00383-017-4082-7

    Article  PubMed  Google Scholar 

  5. Kajbafzadeh AM, Tourchi A, Nezami BG, Khakpour M, Mousavian AA, Talab SS (2011) Miniature pyeloplasty as a minimally invasive surgery with less than 1 day admission in infants. J Pediatr Urol 7(3):283–288. https://doi.org/10.1016/j.jpurol.2011.02.030

    Article  PubMed  Google Scholar 

  6. Ke-Chi CH, Shei-Dei YS (2015) Re: mini incision open pyeloplasty–improvement in patient outcome. Int Braz J Urol 41(6):1236. https://doi.org/10.1590/s1677-5538.Ibju.2015.0616

    Article  PubMed  Google Scholar 

  7. Penn HA, Gatti JM, Hoestje SM, DeMarco RT, Snyder CL, Murphy JP (2010) Laparoscopic versus open pyeloplasty in children: preliminary report of a prospective randomized trial. J Urol 184(2):690–695. https://doi.org/10.1016/j.juro.2010.03.062

    Article  PubMed  Google Scholar 

  8. Peters CA, Schlussel RN, Retik AB (1995) Pediatric laparoscopic dismembered pyeloplasty. J Urol 153(6):1962–1965

    Article  CAS  PubMed  Google Scholar 

  9. Cao H, Zhou H, Liu K, Ma L, Liu D, Tao T et al (2016) A modified technique of paraumbilical three-port laparoscopic dismembered pyeloplasty for infants and children. Pediatr Surg Int 32(11):1037–1045. https://doi.org/10.1007/s00383-016-3958-2

    Article  PubMed  Google Scholar 

  10. Cao H, Zhou H, Luo X, Xiong X, Ma L, Liu D et al (2016) Application of non-clamping laparoscopic pyeloplasty for ureteropelvic junction obstruction. Chin J Pediatr Surg 37(2):139–143. https://doi.org/10.3760/cma.j.issn.0253-3006.2016.02.013

    Article  Google Scholar 

  11. Gadelmoula M, Abdel-Kader MS, Shalaby M, Abdelrazek M, Moeen AM, Zarzour MA et al (2018) Laparoscopic versus open pyeloplasty: a multi-institutional prospective study. Cent European J Urol 71(3):342–345. https://doi.org/10.5173/ceju.2018.1693

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gatti JM, Amstutz SP, Bowlin PR, Stephany HA, Murphy JP (2017) Laparoscopic vs open pyeloplasty in children: results of a randomized, prospective Controlled Trial. J Urol 197(3 Pt 1):792–797. https://doi.org/10.1016/j.juro.2016.10.056

    Article  PubMed  Google Scholar 

  13. Huang Y, Wu Y, Shan W, Zeng L, Huang L (2015) An updated meta-analysis of laparoscopic versus open pyeloplasty for ureteropelvic junction obstruction in children. Int J Clin Exp Med 8(4):4922–4931

    PubMed  PubMed Central  Google Scholar 

  14. Xie H, Zhou H, Ma L, Zhou X, Tao T, Wang C et al (2015) Comparison of two transumbilical laparoscopic pyeloplasties for treating ureteropelvic junction obstruction in children. Chin J Pediatr Surg 36(10):732–735. https://doi.org/10.3760/cma.j.issn.0253-3006.2015.10.004

    Article  Google Scholar 

  15. Liu D, Zhou H, Ma L, Zhou X, Cao H, Tao T et al (2017) Comparison of laparoscopic approaches for dismembered pyeloplasty in children with ureteropelvic junction obstruction: critical analysis of 11-year experiences in a single surgeon. Urology 101:50–55. https://doi.org/10.1016/j.urology.2016.10.007

    Article  PubMed  Google Scholar 

  16. Piaggio LA, Corbetta JP, Weller S, Dingevan RA, Duran V, Ruiz J, Lopez JC (2017) Comparative, prospective, case-control study of open versus laparoscopic pyeloplasty in children with ureteropelvic junction obstruction: long-term results. Front Pediatr 5:10. https://doi.org/10.3389/fped.2017.00010

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mei H, Pu J, Yang C, Zhang H, Zheng L, Tong Q (2011) Laparoscopic versus open pyeloplasty for ureteropelvic junction obstruction in children: a systematic review and meta-analysis. J Endourol 25(5):727–736. https://doi.org/10.1089/end.2010.0544

    Article  PubMed  Google Scholar 

  18. Atug F, Burgess SV, Castle EP, Thomas R (2006) Role of robotics in the management of secondary ureteropelvic junction obstruction. Int J Clin Pract 60(1):9–11. https://doi.org/10.1111/j.1368-5031.2006.00701.x

    Article  PubMed  Google Scholar 

  19. Silay MS, Danacioglu O, Ozel K, Karaman MI, Caskurlu T (2020) Laparoscopy versus robotic-assisted pyeloplasty in children: preliminary results of a pilot prospective randomized controlled trial. World J Urol 38(8):1841–1848. https://doi.org/10.1007/s00345-019-02910-8

    Article  PubMed  Google Scholar 

  20. Chandrasekharam VVS, Babu R (2021) A systematic review and meta-analysis of conventional laparoscopic versus robot-assisted laparoscopic pyeloplasty in infants. J Pediatr Urol 17(4):502–510. https://doi.org/10.1016/j.jpurol.2021.03.009

    Article  CAS  PubMed  Google Scholar 

  21. Chandrasekharam VVS, Babu R (2022) A systematic review and metaanalysis of open, conventional laparoscopic and robot-assisted laparoscopic techniques for re-do pyeloplasty for recurrent uretero pelvic junction obstruction in children. J Pediatr Urol 18(5):642–649. https://doi.org/10.1016/j.jpurol.2022.08.025

    Article  CAS  PubMed  Google Scholar 

  22. Cundy TP, Harling L, Hughes-Hallett A, Mayer EK, Najmaldin AS, Athanasiou T et al (2014) Meta-analysis of robot-assisted vs conventional laparoscopic and open pyeloplasty in children. BJU Int 114(4):582–594. https://doi.org/10.1111/bju.12683

    Article  PubMed  Google Scholar 

  23. Taktak S, Llewellyn O, Aboelsoud M, Hajibandeh S, Hajibandeh S (2019) Robot-assisted laparoscopic pyeloplasty versus laparoscopic pyeloplasty for pelvi-ureteric junction obstruction in the paediatric population: a systematic review and meta-analysis. Ther Adv Urol 11:1756287219835704. https://doi.org/10.1177/1756287219835704

    Article  PubMed  PubMed Central  Google Scholar 

  24. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535. https://doi.org/10.1136/bmj.b2535

    Article  PubMed  PubMed Central  Google Scholar 

  25. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D et al (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283(15):2008–2012. https://doi.org/10.1001/jama.283.15.2008

    Article  CAS  PubMed  Google Scholar 

  26. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605. https://doi.org/10.1007/s10654-010-9491-z

    Article  PubMed  Google Scholar 

  27. Wells G, S. B. O. C. (2009). The New Castle–Ottawa Scale (NOS) for assessing the quality of nonrandomized studies on meta-analysis. Retrieved from http://www.ohri.ca/programs clinical_epidemiology/oxford.asp.

  28. Gu J, Chen X, Yang Z, Bai Y, Zhang X (2022) Gender differences in the microbial spectrum and antibiotic sensitivity of uropathogens isolated from patients with urinary stones. J Clin Lab Anal 36(1):e24155. https://doi.org/10.1002/jcla.24155

    Article  CAS  PubMed  Google Scholar 

  29. Wang H, Hao C, Bai D (2022) Risk factors of urinary tract infection in pediatric patients with ureteropelvic junction obstruction after primary unilateral pyeloplasty. Comput Math Methods Med 2022:3482450. https://doi.org/10.1155/2022/3482450

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gu P, Zhang M, He X (2021) Effect of body mass index on the operative time of retroperitoneal laparoscopic adrenal neoplasm resec-tion. J Contemp Urol Reprod Oncol 13(6):265–267. https://doi.org/10.3870/j.issn.1674-4624.2021.05.003

    Article  Google Scholar 

  31. Wang S, Zheng W, Wo Q, Qi X, Liu F, Zhang D (2023) Impact of body mass index on perioperative efficacy and complications of robot-assisted radical cystectomy with intracorporeal urinary diversion. Chin J Urol 44(2):102–108. https://doi.org/10.3760/cma.j.cn112330-20210420-00214

    Article  CAS  Google Scholar 

  32. Tam YH, Pang KKY, Wong YS, Chan KW, Lee KH (2018) From laparoscopic pyeloplasty to robot-assisted laparoscopic pyeloplasty in primary and reoperative repairs for ureteropelvic junction obstruction in children. J Laparoendosc Adv Surg Tech A 28(8):1012–1018. https://doi.org/10.1089/lap.2017.0561

    Article  PubMed  Google Scholar 

  33. Lyu Y, Xie H, Huang Y, Chen Y, Yang G, Li X et al (2019) Clinical analysis of conventional laparoscopic and robotic-assisted laparoscopic pyeloplasty in children. Chin J Pediatr Surg 40(1):41–44. https://doi.org/10.3760/cma.j.issn.0253-3006.2019.01.009

    Article  Google Scholar 

  34. Riachy E, Cost NG, Defoor WR, Reddy PP, Minevich EA, Noh PH (2013) Pediatric standard and robot-assisted laparoscopic pyeloplasty: a comparative single institution study. J Urol 189(1):283–287. https://doi.org/10.1016/j.juro.2012.09.008

    Article  PubMed  Google Scholar 

  35. Silay MS, Spinoit AF, Undre S, Fiala V, Tandogdu Z, Garmanova T et al (2016) Global minimally invasive pyeloplasty study in children: results from the Pediatric Urology Expert Group of the European Association of Urology Young Academic Urologists working party. J Pediatr Urol 12(4):229.e221–227. https://doi.org/10.1016/j.jpurol.2016.04.007

    Article  Google Scholar 

  36. Zhou, H., Li, L., Li, S., Tang, S., Bi, Y., Wang, X. et al (2017) Guidelines for the operation of laparoscopic pelvic ureteral junction obstruction. Journal of Minimally Invasive Urology, 6(3): 129–135. https://doi.org/10.19558/j.cnki.10-1020/r.2017.03.001

  37. Sun L, Zhao D, Shen Y, Tang D, Chen G, Zhu L et al (2023) Laparoscopic versus robot-assisted pyeloplasty in infants and young children. Asian J Surg 46(2):868–873. https://doi.org/10.1016/j.asjsur.2022.09.046

    Article  PubMed  Google Scholar 

  38. Dangle PP, Kearns J, Anderson B, Gundeti MS (2013) Outcomes of infants undergoing robot-assisted laparoscopic pyeloplasty compared to open repair. J Urol 190(6):2221–2226. https://doi.org/10.1016/j.juro.2013.07.063

    Article  PubMed  Google Scholar 

  39. Lee RS, Retik AB, Borer JG, Peters CA (2006) Pediatric robot assisted laparoscopic dismembered pyeloplasty: comparison with a cohort of open surgery. J Urol 175(2):683–687. https://doi.org/10.1016/s0022-5347(05)00183-7. (discussion 687)

    Article  PubMed  Google Scholar 

  40. Murthy P, Cohn JA, Gundeti MS (2015) Evaluation of robotic-assisted laparoscopic and open pyeloplasty in children: single-surgeon experience. Ann R Coll Surg Engl 97(2):109–114. https://doi.org/10.1308/003588414x14055925058797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Salö M, Sjöberg Altemani T, Anderberg M (2016) Pyeloplasty in children: perioperative results and long-term outcomes of robotic-assisted laparoscopic surgery compared to open surgery. Pediatr Surg Int 32(6):599–607. https://doi.org/10.1007/s00383-016-3869-2

    Article  PubMed  Google Scholar 

  42. Klis R, Korczak-Kozakiewicz E, Denys A, Sosnowski M, Rozanski W (2009) Relationship between urinary tract infection and self-retaining Double-J catheter colonization. J Endourol 23(6):1015–1019. https://doi.org/10.1089/end.2008.0518

    Article  PubMed  Google Scholar 

  43. Neheman A, Kord E, Zisman A, Darawsha AE, Noh PH (2018) Comparison of robotic pyeloplasty and standard laparoscopic pyeloplasty in infants: a Bi-Institutional Study. J Laparoendosc Adv Surg Tech A 28(4):467–470. https://doi.org/10.1089/lap.2017.0262

    Article  PubMed  Google Scholar 

  44. Sethi AS, Regan SM, Sundaram CP (2011) Robot-assisted laparoscopic pyeloplasty with and without a ureteral stent. J Endourol 25(2):239–243. https://doi.org/10.1089/end.2010.0192

    Article  PubMed  Google Scholar 

  45. Behan JW, Kim SS, Dorey F, De Filippo RE, Chang AY, Hardy BE, Koh CJ (2011) Human capital gains associated with robotic assisted laparoscopic pyeloplasty in children compared to open pyeloplasty. J Urol 186(4 Suppl):1663–1667. https://doi.org/10.1016/j.juro.2011.04.019

    Article  PubMed  Google Scholar 

  46. Liu DB, Ellimoottil C, Flum AS, Casey JT, Gong EM (2014) Contemporary national comparison of open, laparoscopic, and robotic-assisted laparoscopic pediatric pyeloplasty. J Pediatr Urol 10(4):610–615. https://doi.org/10.1016/j.jpurol.2014.06.010

    Article  PubMed  Google Scholar 

  47. Esposito C, Masieri L, Castagnetti M, Sforza S, Farina A, Cerulo M et al (2019) Robot-assisted vs laparoscopic pyeloplasty in children with uretero-pelvic junction obstruction (UPJO): technical considerations and results. J Pediatr Urol 15(6):667.e661-667.e668. https://doi.org/10.1016/j.jpurol.2019.09.018

    Article  Google Scholar 

  48. Ganpule A, Jairath A, Singh A, Mishra S, Sabnis R, Desai M (2015) Robotic versus conventional laparoscopic pyeloplasty in children less than 20 kg by weight: single-center experience. World J Urol 33(11):1867–1873. https://doi.org/10.1007/s00345-015-1694-1

    Article  PubMed  Google Scholar 

  49. Song SH, Lee C, Jung J, Kim SJ, Park S, Park H, Kim KS (2017) A comparative study of pediatric open pyeloplasty, laparoscopy-assisted extracorporeal pyeloplasty, and robot-assisted laparoscopic pyeloplasty. PLoS ONE 12(4):e0175026. https://doi.org/10.1371/journal.pone.0175026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. González ST, Rosito TE, Tur AB, Ruiz J, Gozalbez R, Maiolo A et al (2022) Multicenter comparative study of open, laparoscopic, and robotic pyeloplasty in the pediatric population for the treatment of ureteropelvic junction obstruction (UPJO). Int Braz J Urol 48(6):961–968. https://doi.org/10.1590/s1677-5538.Ibju.2022.0194

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jia M (2022) Clinical effectiveness of robot-assisted laparoscopic pyeloplasty in the treatment of hydronephrosis in infants and children. Henan University, 2: 63. https://doi.org/10.27114/d.cnki.ghnau.2022.001485

  52. Chen J, Xu H, Lin S, He S, Tang K, Xiao Z, Xu D (2022) Robot-assisted pyeloplasty and laparoscopic pyeloplasty in children: a comparison of single-port-plus-one and multiport surgery. Front Pediatr 10:957790. https://doi.org/10.3389/fped.2022.957790

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li L, Zhang J, Zhang S, Tian G, Fan Y (2022) Application value of robot-assisted versus traditional laparoscopic pyeloplasty in children. Chin J Pediatr Surg 43(1):14–19. https://doi.org/10.3760/cma.j.cn421158-20210227-00093

    Article  Google Scholar 

  54. Rague JT, Arora HC, Chu DI, Shannon R, Rosoklija I, Johnson EK et al (2022) Safety and efficacy of robot-assisted laparoscopic pyeloplasty compared to open repair in infants under 1 year of age. J Urol 207(2):432–440. https://doi.org/10.1097/ju.0000000000002232

    Article  PubMed  Google Scholar 

  55. Cignacco E, Schenk K, Stevens B, Stoffel L, Bassler D, Schulzke S, Nelle M (2017) Individual contextual factors in the validation of the Bernese pain scale for neonates: protocol for a prospective observational study. BMC Pediatr 17(1):171. https://doi.org/10.1186/s12887-017-0914-9

    Article  PubMed  PubMed Central  Google Scholar 

  56. Casella DP, Fox JA, Schneck FX, Cannon GM, Ost MC (2013) Cost analysis of pediatric robot-assisted and laparoscopic pyeloplasty. J Urol 189(3):1083–1086. https://doi.org/10.1016/j.juro.2012.08.259

    Article  PubMed  Google Scholar 

  57. Ebert KM, Nicassio L, Alpert SA, Ching CB, Dajusta DG, Fuchs ME et al (2020) Surgical outcomes are equivalent after pure laparoscopic and robotic-assisted pyeloplasty for ureteropelvic junction obstruction. J Pediatr Urol 16(6):845.e841-845.e846. https://doi.org/10.1016/j.jpurol.2020.09.018

    Article  Google Scholar 

  58. Barbosa JA, Kowal A, Onal B, Gouveia E, Walters M, Newcomer J et al (2013) Comparative evaluation of the resolution of hydronephrosis in children who underwent open and robotic-assisted laparoscopic pyeloplasty. J Pediatr Urol 9(2):199–205. https://doi.org/10.1016/j.jpurol.2012.02.002

    Article  PubMed  Google Scholar 

  59. Wong YS, Yi Pang KK, Tam YH (2020) Comparing laparoscopic pyeloplasty versus robot-assisted laparoscopic pyeloplasty for pelvi-ureteric junction obstruction in infants aged 12 months or less. J Pediatr Urol 16:S53. https://doi.org/10.1016/j.jpurol.2020.05.121

    Article  Google Scholar 

  60. Wong YS, Pang KKY, Tam YH (2021) Comparing robot-assisted laparoscopic pyeloplasty vs. laparoscopic pyeloplasty in infants aged 12 months or less. Front Pediatr 9:647139. https://doi.org/10.3389/fped.2021.647139

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

MS and SW conceive and design the meta-analysis, MS, JZ and ML searched the database and extracted the clinical data. MS, CY, and YL analyzed and interpreted the data, and drafted and revised the manuscript based on feedback. RH and LC assisted with the data acquisition and interpretation. SW assisted with the conception and design, and critical revision of drafts. CY assisted with the language editing. SW provided funding support.

Corresponding author

Correspondence to Shengde Wu.

Ethics declarations

Conflict of interest

Miao Sun, Chengjun Yu, Jie Zhao, Maolin Liu, Yan Liu, Rong Han, Long Chen and Shengde Wu have no relevant conflicts of interest or financial ties to disclose.

Ethical approval

There is no need for this.

Consent for publication

All authors approved the final version of this manuscript and approved for possible publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

383_2023_5541_MOESM1_ESM.pdf

Supplementary file1 Figure supplementary 1 Galbraith plot of the primary outcome indicators: (a) the success rate of RALP vs OP; (b) the success rate of RALP vs LP; (c) postoperative complications of RALP vs OP; (d) postoperative complications of RALP vs LP; (e) operation time of RALP vs OP; (f) operation time of RALP vs LP; (g) length stay of RALP vs OP; (h) length stay of RALP vs LP. (PDF 2272 KB)

383_2023_5541_MOESM2_ESM.pdf

Supplementary file2 Figure supplementary 2 Forest plot comparisons of LOS for studies comparing (a) RALP vs OP, (b) subgroup analysis of the LOS between RALP and OP, and comparing (c) RALP vs LP, (d) subgroup analysis of the LOS between RALP and LP. (PDF 8894 KB)

383_2023_5541_MOESM3_ESM.pdf

Supplementary file3 Figure supplementary 3 (a) funnel plot of the success rate comparing RALP with LP, (b) trim and fill method of the success rate of comparing RALP with LP, (c) trim and fill method of postoperative complication rate of comparing RALP with LP. (PDF 1613 KB)

383_2023_5541_MOESM4_ESM.pdf

Supplementary file4 Figure supplementary 4 Individual studies: success rate of comparing RALP with LP (a), postoperative complication rate of comparing RALP with LP (b), operation time of comparing RALP with LP (c), LOS of comparing RALP with LP (d), operation time of comparing RALP with OP (e), LOS of comparing RALP with OP (f). (PDF 5436 KB)

Appendix A. Supplementary data

Appendix A. Supplementary data

Supplementary data to this article can be found online.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Yu, C., Zhao, J. et al. The efficacy of robotic-assisted laparoscopic pyeloplasty for pediatric ureteropelvic junction obstruction: a systematic review and meta-analysis. Pediatr Surg Int 39, 265 (2023). https://doi.org/10.1007/s00383-023-05541-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00383-023-05541-8

Keywords

Navigation