Skip to main content

Advertisement

Log in

A pilot study characterizing longitudinal changes in fecal microbiota of patients with Hirschsprung-associated enterocolitis

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

Hirschsprung disease is a neurointestinal disease that occurs due to failure of enteric neural crest-derived cells to complete their rostrocaudal migration along the gut mesenchyme, resulting in aganglionosis along variable lengths of the distal bowel. Despite the effective surgery that removes the aganglionic segment, children with Hirschsprung disease remain at high risk for developing a potentially life-threatening enterocolitis (Hirschsprung-associated enterocolitis). Although the etiology of this enterocolitis remains poorly understood, several recent studies in both mouse models and in human subjects suggest potential involvement of gastrointestinal microbiota in the underlying pathogenesis of Hirschsprung-associated enterocolitis.

Methods

We present the first study to exploit the Illumina MiSeq next-generation sequencing platform within a longitudinal framework focused on microbiomes of Hirschsprung-associated enterocolitis in five patients. We analyzed bacterial communities from fecal samples collected at different timepoints starting from active enterocolitis and progressing into remission.

Results

We observed compositional differences between patients largely attributable to variability in age at the time of sample collection. Remission samples across patients exhibited compositional similarity, including enrichment of Blautia, while active enterocolitis samples showed substantial variability in composition.

Conclusions

Overall, our findings provide continued support for the role of GI microbiota in the pathogenesis of Hirschsprung-associated enterocolitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goldstein AM, Thapar N, Karunaratne TB, De Giorgio R (2016) Clinical aspects of neurointestinal disease: pathophysiology, diagnosis, and treatment. Dev Biol 417:217–228

    Article  CAS  Google Scholar 

  2. Zimmer J, Tomuschat C, Puri P (2016) Long-term results of transanal pull-through for Hirschsprung’s disease: a meta-analysis. Pediatr Res 80:729–733

    Google Scholar 

  3. Neuvonen MI, Kyrklund K, Lindahl HG et al (2015) A population-based, complete follow-up of 145 consecutive patients after transanal mucosectomy for Hirschsprung disease. J Pediatr Surg 50:1653–1658

    Article  Google Scholar 

  4. Mc Laughlin D, Friedmacher F, Puri P (2012) Total colonic aganglionosis: a systematic review and meta-analysis of long-term clinical outcome. Pediatr Surg Int 28:773–779

    Article  Google Scholar 

  5. Catto-Smith AG, Trajanovska M, Taylor RG (2007) Long-term continence after surgery for Hirschsprung’s disease. J Gastroenterol Hepatol 22:2273–2282

    Article  Google Scholar 

  6. Jarvi K, Laitakari EM, Koivusalo A et al (2010) Bowel function and gastrointestinal quality of life among adults operated for hirschsprung disease during childhood: a population-based study. Ann Surg 252:977–981

    Article  Google Scholar 

  7. Niramis R, Watanatittan S, Anuntkosol M et al (2008) Quality of life of patients with Hirschsprung’s disease at 5–20 years post pull-through operations. Eur J Pediatr Surg 18:38–43

    Article  CAS  Google Scholar 

  8. Haricharan RN, Seo J-M, Kelly DR et al (2008) Older age at diagnosis of Hirschsprung disease decreases risk of postoperative enterocolitis, but resection of additional ganglionated bowel does not. J Pediatr Surg 43:1115–1123. https://doi.org/10.1016/j.jpedsurg.2008.02.039

    Article  PubMed  Google Scholar 

  9. Pastor AC, Osman F, Teitelbaum DH et al (2009) Development of a standardized definition for Hirschsprung’s-associated enterocolitis: a Delphi analysis. J Pediatr Surg 44:251–256. https://doi.org/10.1016/j.jpedsurg.2008.10.052

    Article  PubMed  Google Scholar 

  10. El-Sawaf M, Siddiqui S, Mahmoud M et al (2013) Probiotic prophylaxis after pullthrough for Hirschsprung disease to reduce incidence of enterocolitis: a prospective, randomized, double-blind, placebo-controlled, multicenter trial. J Pediatr Surg 48:111–117. https://doi.org/10.1016/j.jpedsurg.2012.10.028

    Article  PubMed  Google Scholar 

  11. Bill AH, Chapman ND (1962) The enterocolitis of Hirschsprung’s disease: Its natural history and treatment. Am J Surg 103:70–74. https://doi.org/10.1016/0002-9610(62)90016-8

    Article  Google Scholar 

  12. Moore SW, Sidler D, Zaahl MG (2008) The ITGB2 immunomodulatory gene (CD18), enterocolitis, and Hirschsprung’s disease. J Pediatr Surg 43:1439–1444. https://doi.org/10.1016/j.jpedsurg.2007.12.057

    Article  PubMed  Google Scholar 

  13. Mattar AF, Coran AG, Teitelbaum DH (2003) MUC-2 mucin production in Hirschsprung’s disease: possible association with enterocolitis development. J Pediatr Surg 38:417–421. https://doi.org/10.1053/jpsu.2003.50071

    Article  PubMed  Google Scholar 

  14. Thiagarajah JR, Yildiz H, Carlson T et al (2014) Altered goblet cell differentiation and surface mucus properties in Hirschsprung disease. PLoS ONE 9:e99944. https://doi.org/10.1371/journal.pone.0099944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ward NL, Pieretti A, Dowd SE et al (2012) Intestinal aganglionosis is associated with early and sustained disruption of the colonic microbiome. Neurogastroenterol Motil 24:874-e400. https://doi.org/10.1111/j.1365-2982.2012.01937.x

    Article  CAS  PubMed  Google Scholar 

  16. Frykman PK, Nordenskjöld A, Kawaguchi A et al (2015) Characterization of bacterial and fungal microbiome in children with Hirschsprung disease with and without a history of enterocolitis: a multicenter study. PLoS ONE. https://doi.org/10.1371/journal.pone.0124172

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li Y, Poroyko V, Yan Z et al (2016) Characterization of Intestinal microbiomes of Hirschsprung’s disease patients with or without enterocolitis using illumina-miseq high-throughput sequencing. PLoS ONE. https://doi.org/10.1371/journal.pone.0162079

    Article  PubMed  PubMed Central  Google Scholar 

  18. Medrano G, Cailleux F, Kuruvilla K et al (2019) B-lymphocyte–intrinsic and –extrinsic defects in secretory immunoglobulin A production in the neural crest–conditional deletion of endothelin receptor B model of Hirschsprung-associated enterocolitis. FASEB J 33:7615–7624

    Article  CAS  Google Scholar 

  19. Gosain A (2016) Established and emerging concepts in hirschsprung’s-associated enterocolitis. Pediatr Surg Int 32:313–320

    Article  Google Scholar 

  20. Tang Q, Jin G, Wang G et al (2020) Current sampling methods for gut microbiota: a call for more precise devices. Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2020.00151

    Article  Google Scholar 

  21. Neuvonen MI, Korpela K, Kyrklund K et al (2018) Intestinal microbiota in Hirschsprung disease. J Pediatr Gastroenterol Nutr 67:594–600. https://doi.org/10.1097/MPG.0000000000001999

    Article  PubMed  Google Scholar 

  22. Hiergeist A, Reischl U, Gessner A (2016) Multicenter quality assessment of 16S ribosomal DNA-sequencing for microbiome analyses reveals high inter-center variability. Int J Med Microbiol 306:334–342. https://doi.org/10.1016/j.ijmm.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  23. Pierre JF, Barlow-Anacker AJ, Erickson CS et al (2014) Intestinal dysbiosis and bacterial enteroinvasion in a murine model of Hirschsprung’s disease. J Pediatr Surg 49:1242–1251. https://doi.org/10.1016/j.jpedsurg.2014.01.060

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cheng Z, Zhao L, Dhall D et al (2018) Bacterial microbiome dynamics in post pull-through Hirschsprung-associated enterocolitis (HAEC): an experimental study employing the endothelin receptor B-null mouse model. Front Surg. https://doi.org/10.3389/fsurg.2018.00030

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tang W, Su Y, Yuan C et al (2020) Prospective study reveals a microbiome signature that predicts the occurrence of post-operative enterocolitis in Hirschsprung disease (HSCR) patients. Gut Microbes 11:842–854

    Article  Google Scholar 

  26. Gordon JI, Hooper LV, McNevin MS et al (1997) Epithelial cell growth and differentiation. III. Promoting diversity in the intestine: conversations between the microflora, epithelium, and diffuse GALT. Am J Physiol 273:G565-570. https://doi.org/10.1152/ajpgi.1997.273.3.G565

    Article  CAS  PubMed  Google Scholar 

  27. Tappenden KA, Deutsch AS (2007) The physiological relevance of the intestinal microbiota–contributions to human health. J Am Coll Nutr 26:679S-S683

    Article  Google Scholar 

  28. Sharma R, Young C, Neu J (2010) Molecular modulation of intestinal epithelial barrier: contribution of microbiota. In: BioMed Res. Int. https://www.hindawi.com/journals/bmri/2010/305879/. Accessed 28 Aug 2018

  29. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods. https://doi.org/10.1038/NMETH.F.303

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. NatBiotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  Google Scholar 

  31. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  32. Amir A, McDonald D, Navas-Molina JA et al (2017) Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2:e00191-16. https://doi.org/10.1128/mSystems.00191-16

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pedregosa F, Varoquaux G, Gramfort A, et al (2012) Scikit-learn: Machine Learning in Python. ArXiv12010490 Cs

  34. Bokulich NA, Kaehler BD, Rideout JR et al (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:90. https://doi.org/10.1186/s40168-018-0470-z

    Article  PubMed  PubMed Central  Google Scholar 

  35. DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a Chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Env Microbiol 72:5069–5072. https://doi.org/10.1128/AEM.03006-05

    Article  CAS  Google Scholar 

  36. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Price MN, Dehal PS, Arkin AP (2010) FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5:e9490. https://doi.org/10.1371/journal.pone.0009490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  39. Wickham H, Francois R, Henry L, Müller K (2017) dplyr: A grammar of data manipulation.

  40. Wickham H (2009) ggplot2—Elegant graphics for data analysis. Springer-Verlag, New York

    Google Scholar 

  41. Chen J, Bittinger K, Charlson ES et al (2012) Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinforma Oxf Engl 28:2106–2113. https://doi.org/10.1093/bioinformatics/bts342

    Article  CAS  Google Scholar 

  42. Sokal R, Michener C (1958) A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38:1409–1438

    Google Scholar 

  43. Borg I, Groenen PJF (2005) Modern multidimensional scaling: theory and applications. Springer, Berlin

    Google Scholar 

  44. Suzuki R, Shimodaira H (2006) Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinforma Oxf Engl 22:1540–1542. https://doi.org/10.1093/bioinformatics/btl117

    Article  CAS  Google Scholar 

  45. Galili T (2015) dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics. https://doi.org/10.1093/bioinformatics/btv428

    Article  PubMed  PubMed Central  Google Scholar 

  46. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. https://doi.org/10.1093/bioinformatics/btg412

    Article  CAS  PubMed  Google Scholar 

  47. S. Albeke (2017) rKIN: (Kernel) Isotope Niche Estimation. Laramie.

  48. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ (2017) Microbiome datasets are compositional: and this is not optional. Front Microbiol. https://doi.org/10.3389/fmicb.2017.02224

    Article  PubMed  PubMed Central  Google Scholar 

  49. Palarea-Albaladejo J, Martín-Fernández JA (2015) zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemom Intell Lab Syst 143:85–96. https://doi.org/10.1016/j.chemolab.2015.02.019

    Article  CAS  Google Scholar 

  50. Martín-Fernández J-A, Hron K, Templ M et al (2015) Bayesian-multiplicative treatment of count zeros in compositional data sets. Stat Model 15:134–158. https://doi.org/10.1177/1471082X14535524

    Article  Google Scholar 

  51. Vincent QV (2011) ggbiplot: A ggplot2 based biplot

  52. Wickham H (2007) Reshaping data with the reshape package. J Stat Softw 21:1–20

    Article  Google Scholar 

  53. Kassambara A (2018) ggpubr: “ggplot2” Based Publication Ready Plots

  54. Harrower M, Brewer CA (2003) ColorBrewer.org: an online tool for selecting color schemes for maps. ET J 40:27–37. https://doi.org/10.1179/000870403235002042

    Article  Google Scholar 

  55. Hollander M, Wolfe DA, Chicken E (2013) Nonparametric statistical methods. Wiley, Hoboken

    Google Scholar 

  56. Dunn OJ (1964) Multiple comparisons using rank sums. Technometrics 6:241–252. https://doi.org/10.1080/00401706.1964.10490181

    Article  Google Scholar 

  57. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  58. Jari Oksanen, F. Guillaume Blanchet, Michael Friendly, et al (2017) Vegan: community ecology package

  59. Eckburg PB, Bik EM, Bernstein CN et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638. https://doi.org/10.1126/science.1110591

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zoetendal EG, von Wright A, Vilpponen-Salmela T et al (2002) Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Env Microbiol 68:3401–3407. https://doi.org/10.1128/AEM.68.7.3401-3407.2002

    Article  CAS  Google Scholar 

  61. Durbán A, Abellán JJ, Jiménez-Hernández N et al (2012) Structural alterations of faecal and mucosa-associated bacterial communities in irritable bowel syndrome. Environ Microbiol Rep 4:242–247. https://doi.org/10.1111/j.1758-2229.2012.00327.x

    Article  CAS  PubMed  Google Scholar 

  62. Tap J, Derrien M, Törnblom H et al (2017) Identification of an intestinal microbiota signature associated with severity of irritable bowel syndrome. Gastroenterology 152:111–123

    Article  Google Scholar 

  63. Rangel I, Sundin J, Fuentes S et al (2015) The relationship between faecal-associated and mucosal-associated microbiota in irritable bowel syndrome patients and healthy subjects. Aliment Pharmacol Ther 42:1211–1221

    Article  CAS  Google Scholar 

  64. Haange S-B, Oberbach A, Schlichting N et al (2012) Metaproteome analysis and molecular genetics of rat intestinal microbiota reveals section and localization resolved species distribution and enzymatic functionalities. J Proteome Res 11:5406–5417. https://doi.org/10.1021/pr3006364

    Article  CAS  PubMed  Google Scholar 

  65. Ringel Y, Maharshak N, Ringel-Kulka T et al (2015) High throughput sequencing reveals distinct microbial populations within the mucosal and luminal niches in healthy individuals. Gut Microbes 6:173–181

    Article  CAS  Google Scholar 

  66. Meisel JS, Hannigan GD, Tyldsley AS et al (2016) Skin microbiome surveys are strongly influenced by experimental design. J Invest Dermatol 136:947–956. https://doi.org/10.1016/j.jid.2016.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pollock J, Glendinning L, Wisedchanwet T, Watson M (2018) The madness of microbiome: attempting to find consensus “Best Practice” for 16S microbiome studies. Appl Environ Microbiol 84:e02627-e2717. https://doi.org/10.1128/AEM.02627-17

    Article  PubMed  PubMed Central  Google Scholar 

  68. de la Cuesta-Zuluaga J, Escobar JS (2016) Considerations for optimizing microbiome analysis using a marker gene. Front Nutr. https://doi.org/10.3389/fnut.2016.00026

    Article  PubMed  PubMed Central  Google Scholar 

  69. Favier CF, Vaughan EE, Vos WMD, Akkermans ADL (2002) Molecular monitoring of succession of bacterial communities in human neonates. Appl Env Microbiol 68:219–226. https://doi.org/10.1128/AEM.68.1.219-226.2002

    Article  CAS  Google Scholar 

  70. Palmer C, Bik EM, DiGiulio DB et al (2007) Development of the human infant intestinal microbiota. PLoS Biol 5:e177. https://doi.org/10.1371/journal.pbio.0050177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Koenig JE, Spor A, Scalfone N et al (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 108(1):4578–4585. https://doi.org/10.1073/pnas.1000081107

    Article  PubMed  Google Scholar 

  72. Avershina E, Storrø O, Øien T et al (2014) Major faecal microbiota shifts in composition and diversity with age in a geographically restricted cohort of mothers and their children. FEMS Microbiol Ecol 87:280–290. https://doi.org/10.1111/1574-6941.12223

    Article  CAS  PubMed  Google Scholar 

  73. Buford TW, Carter CS, VanDerPol WJ et al (2018) Composition and richness of the serum microbiome differ by age and link to systemic inflammation. GeroScience 40:257–268. https://doi.org/10.1007/s11357-018-0026-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yan Z, Poroyko V, Gu S et al (2014) Characterization of the intestinal microbiome of Hirschsprung’s disease with and without enterocolitis. Biochem Biophys Res Commun 445:269–274. https://doi.org/10.1016/j.bbrc.2014.01.104

    Article  CAS  PubMed  Google Scholar 

  75. Penders J, Thijs C, Vink C et al (2006) Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118:511–521. https://doi.org/10.1542/peds.2005-2824

    Article  PubMed  Google Scholar 

  76. Wexler HM (2007) Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 20:593–621. https://doi.org/10.1128/CMR.00008-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zamani S, Hesam Shariati S, Zali MR et al (2017) Detection of enterotoxigenic Bacteroides fragilis in patients with ulcerative colitis. Gut Pathog. https://doi.org/10.1186/s13099-017-0202-0

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sun F, Zhang Q, Zhao J et al (2019) A potential species of next-generation probiotics? The dark and light sides of Bacteroides fragilis in health. Food Res Int. https://doi.org/10.1016/j.foodres.2019.108590

    Article  PubMed  Google Scholar 

  79. Shen D-H, Shi C-R, Chen J-J et al (2009) Detection of intestinal bifidobacteria and lactobacilli in patients with Hirschsprung’s disease associated enterocolitis. World J Pediatr WJP 5:201–205. https://doi.org/10.1007/s12519-009-0038-x

    Article  CAS  PubMed  Google Scholar 

  80. Graspeuntner S, Loeper N, Künzel S et al (2018) Selection of validated hypervariable regions is crucial in 16S-based microbiota studies of the female genital tract. Sci Rep 8:9678. https://doi.org/10.1038/s41598-018-27757-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Silva MJB, Carneiro MBH, dos Anjos PB et al (2015) The multifaceted role of commensal microbiota in homeostasis and gastrointestinal diseases. J Immunol Res 2015:321241. https://doi.org/10.1155/2015/321241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Swidsinski A, Weber J, Loening-Baucke V et al (2005) Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol 43:3380–3389. https://doi.org/10.1128/JCM.43.7.3380-3389.2005

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gong D, Gong X, Wang L, et al (2016) Involvement of reduced microbial diversity in inflammatory bowel disease. In: Gastroenterol. Res. Pract. https://www.hindawi.com/journals/grp/2016/6951091/. Accessed 20 Aug 2018

  84. Ashton JJ, Colquhoun CM, Cleary DW et al (2017) 16S sequencing and functional analysis of the fecal microbiome during treatment of newly diagnosed pediatric inflammatory bowel disease. Medicine 96:e7347. https://doi.org/10.1097/MD.0000000000007347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Parker KD, Albeke SE, Gigley JP et al (2018) Microbiome composition in both wild-type and disease model mice is heavily influenced by mouse facility. Front Microbiol. https://doi.org/10.3389/fmicb.2018.01598

    Article  PubMed  PubMed Central  Google Scholar 

  86. Simon GL, Gorbach SL (1984) Intestinal flora in health and disease. Gastroenterology 86:174–193

    Article  CAS  Google Scholar 

  87. Mackie RI, Sghir A, Gaskins HR (1999) Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 69:1035S-1045S

    Article  CAS  Google Scholar 

  88. Miquel S, Martín R, Rossi O et al (2013) Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol 16:255–261. https://doi.org/10.1016/j.mib.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  89. Sokol H, Seksik P, Furet JP et al (2009) Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 15:1183–1189. https://doi.org/10.1002/ibd.20903

    Article  CAS  PubMed  Google Scholar 

  90. Hansen R, Russell RK, Reiff C et al (2012) Microbiota of De-Novo pediatric IBD: increased Faecalibacterium Prausnitzii and reduced bacterial diversity in Crohn’s but not in ulcerative colitis. Am J Gastroenterol 107:1913–1922. https://doi.org/10.1038/ajg.2012.335

    Article  CAS  PubMed  Google Scholar 

  91. Rajilić-Stojanović M, Jonkers DM, Salonen A et al (2015) Intestinal microbiota and diet in IBS: causes, consequences, or epiphenomena? Am J Gastroenterol 110:278–287. https://doi.org/10.1038/ajg.2014.427

    Article  PubMed  PubMed Central  Google Scholar 

  92. Gevers D, Kugathasan S, Denson LA et al (2014) The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15:382–392. https://doi.org/10.1016/j.chom.2014.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jenq RR, Taur Y, Devlin SM et al (2015) Intestinal blautia is associated with reduced death from graft-versus-host disease. Biol Blood Marrow Transplant 21:1373–1383. https://doi.org/10.1016/j.bbmt.2015.04.016

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bajaj JS, Hylemon PB, Ridlon JM et al (2012) Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. Am J Physiol Gastrointest Liver Physiol 303:G675-685. https://doi.org/10.1152/ajpgi.00152.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nakamura H, Lim T, Puri P (2018) Probiotics for the prevention of Hirschsprung-associated enterocolitis: a systematic review and meta-analysis. Pediatr Surg Int 34:189–193

    Article  CAS  Google Scholar 

  96. Soh HJ, Nataraja RM, Pacilli M (2018) Prevention and management of recurrent postoperative Hirschsprung’s disease obstructive symptoms and enterocolitis: systematic review and meta-analysis. J Pediatr Surg 53:2423–2429

    Article  Google Scholar 

  97. Wang X, Li Z, Xu Z et al (2015) Probiotics prevent Hirschsprung’s disease-associated enterocolitis: a prospective multicenter randomized controlled trial. Int J Colorectal Dis 30:105–110

    Article  Google Scholar 

Download references

Funding

National Institute of General Medical Sciences, DK098696-01A1, Naomi Ward, 2P20GM103432.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi L. Ward.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parker, K.D., Mueller, J.L., Westfal, M. et al. A pilot study characterizing longitudinal changes in fecal microbiota of patients with Hirschsprung-associated enterocolitis. Pediatr Surg Int 38, 1541–1553 (2022). https://doi.org/10.1007/s00383-022-05191-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-022-05191-2

Keywords

Navigation