Skip to main content

Advertisement

Log in

Study protocol of Phase 2 open-label multicenter randomized controlled trial for granulocyte-colony stimulating factor (GCSF) in post-Kasai Type 3 biliary atresia

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Animal studies support RCT findings of improved liver function and short-term benefits using repurposed Granulocyte Colonic Stimulating Factor GCSF in adults with decompensated cirrhosis. We describe the protocol for phase 2 RCT of sequential Kasai-GCSF under an FDA-approved IND to test that GCSF improves early bile flow and post-Kasai biliary atresia BA clinical outcome. Immediate post-Kasai neonates, age 15–180 days, with biopsy-confirmed type 3 BA, without access to early liver transplantation, will be randomized 1:1 to standard of care SOC + GCSF at 10 ug/kg in 3 daily doses within 4 days of Kasai vs SOC + NO-GCSF (ClinicalTrials.gov NCT0437391). They will be recruited from children’s hospitals in Vietnam, Pakistan and one US center. The primary objective is to demonstrate that GCSF decreases the proportion of subjects with a 3-month post-Kasai serum Total Bilirubin ≥ 34 umol/L by 20%, (for a = 0.05, b = 0.80, i.e., calculated sample size of 218 subjects). The secondary objectives are to demonstrate that the frequency of post-Kasai cholangitis at 6-month and 24-month transplant-free survival are improved. The benefits are that GCSF is an affordable BA adjunct therapy, especially in developing countries, to improve biliary complications, enhance quality of liver and survival while diminishing costly liver transplantation.

Clinical trial registration: A phase 1 for GCSF dose and safety determination under ClinicalTrials.gov identifier NCT03395028 was completed in 2019. The current Phase 2 trial was registered under NCT04373941.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BA:

Biliary atresia

HSC:

Hematopoietic stem cells

GCSF:

Granulocyte-colony stimulating factor

CD:

Cluster of differentiation

RCT:

Randomized clinical trial

FDA:

Food and drug administration

IND:

Investigational new drug

NCT:

National clinical trial

VN:

Vietnam

TBi:

Total bilirubin

IE:

Inclusion/exclusion

GGT:

Gamma glutamyl transpeptidase

WBC:

White blood cell count

BASM:

Biliary atresia splenic malformation syndrome

CBC:

Complete blood count

LFT:

Liver function test

INR:

International normalized ratio

PELD:

Pediatric end stage liver disease

CD:

Cluster of differentiation

BEC:

Biliary epithelial cell

CMV:

Cytomegalovirus

CTCAE:

Common terminology criteria for adverse events

DR:

Ductular reaction

DSMB:

Data safety monitoring board

PBC:

Primary biliary cirrhosis

PSC:

Primary sclerosing cholangitis

TH17:

T helper 17

References

  1. Bezerra JA, Wells RG, Mack CL, Karpen SJ, Hoofnagle JH, Doo E et al (2018) Biliary atresia: clinical and research challenges for the Twenty-First Century. Hepatology 68(3):1163–1173

    Article  PubMed  Google Scholar 

  2. Theise ND, Badve S, Saxena R, Henegariu O, Sell S, Crawford JM et al (2000) Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology 31(1):235–240

    Article  CAS  PubMed  Google Scholar 

  3. Theise ND, Nimmakayalu M, Gardner R, Illei PB, Morgan G, Teperman L et al (2000) Liver from bone marrow in humans. Hepatology 32(1):11–16

    Article  CAS  PubMed  Google Scholar 

  4. Kholodenko IV, Yarygin KN (2017) Cellular mechanisms of liver regeneration and cell-based therapies of liver diseases. Biomed Res Int 2017:8910821

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dwyer BJ, Macmillan MT, Brennan PN, Forbes SJ (2021) Cell therapy for advanced liver diseases: repair or rebuild. J Hepatol 74(1):185–199

    Article  CAS  PubMed  Google Scholar 

  6. de Kruijf EFM, Fibbe WE, van Pel M (2020) Cytokine-induced hematopoietic stem and progenitor cell mobilization: unraveling interactions between stem cells and their niche. Ann N Y Acad Sci 1466(1):24–38

    Article  PubMed  CAS  Google Scholar 

  7. Busch CJ, Wanner GA, Menger MD, Vollmar B (2004) Granulocyte colony-stimulating factor (G-CSF) reduces not only gram-negative but also gram-positive infection-associated proinflammatory cytokine release by interaction between Kupffer cells and leukocytes. Inflamm Res 53(5):205–210

    Article  CAS  PubMed  Google Scholar 

  8. Fang B, Luo S, Song Y, Li N, Li H, Zhao RC (2010) Intermittent dosing of G-CSF to ameliorate carbon tetrachloride-induced liver fibrosis in mice. Toxicology 270(1):43–48

    Article  CAS  PubMed  Google Scholar 

  9. Vollmar B, Messner S, Wanner GA, Hartung T, Menger MD (1997) Immunomodulatory action of G-CSF in a rat model of endotoxin-induced liver injury: an intravital microscopic analysis of Kupffer cell and leukocyte response. J Leukoc Biol 62(6):710–718

    Article  CAS  PubMed  Google Scholar 

  10. Yannaki E, Athanasiou E, Xagorari A, Constantinou V, Batsis I, Kaloyannidis P et al (2005) G-CSF-primed hematopoietic stem cells or G-CSF per se accelerate recovery and improve survival after liver injury, predominantly by promoting endogenous repair programs. Exp Hematol 33(1):108–119

    Article  CAS  PubMed  Google Scholar 

  11. Do HQ, Le TV, Dang MT, Pham-le TT, Tran LV, Huynh KC, Holterman A, Truong NH (2019) Recombinant human GCSF alleviates liver fibrosis in bile duct-ligated mice. Biomed Res Ther 6(6):3222–3232

    Article  Google Scholar 

  12. Anand L, Bihari C, Kedarisetty CK, Rooge SB, Kumar D, Shubham S et al (2019) Early cirrhosis and a preserved bone marrow niche favour regenerative response to growth factors in decompensated cirrhosis. Liver Int 39(1):115–126

    Article  PubMed  Google Scholar 

  13. Garg V, Garg H, Khan A, Trehanpati N, Kumar A, Sharma BC et al (2012) Granulocyte colony-stimulating factor mobilizes CD34(+) cells and improves survival of patients with acute-on-chronic liver failure. Gastroenterology 142(3):505–512

    Article  CAS  PubMed  Google Scholar 

  14. Yang Q, Yang Y, Shi Y, Lv F, He J, Chen Z (2016) Effects of granulocyte colony-stimulating factor on patients with liver failure: a meta-analysis. J Clin Transl Hepatol 4(2):90–96

    PubMed  PubMed Central  Google Scholar 

  15. Chavez-Tapia NC, Mendiola-Pastrana I, Ornelas-Arroyo VJ, Norena-Herrera C, Vidana-Perez D, Delgado-Sanchez G et al (2015) Granulocyte-colony stimulating factor for acute-on-chronic liver failure: systematic review and meta-analysis. Ann Hepatol 14(5):631–641

    Article  CAS  PubMed  Google Scholar 

  16. Holterman A, Nguyen HPA, Nadler E, Vu GH, Mohan P, Vu M et al (2021) Granulocyte-colony stimulating factor GCSF mobilizes hematopoietic stem cells in Kasai patients with biliary atresia in a phase 1 study and improves short term outcome. J Pediatr Surg 56(7):1179–1185

    Article  PubMed  Google Scholar 

  17. Chung PHY, Zheng S, Tam PKH (2020) Biliary atresia: east versus west. Semin Pediatr Surg 29(4):150950

    Article  PubMed  Google Scholar 

  18. Chardot C, Buet C, Serinet MO, Golmard JL, Lachaux A, Roquelaure B et al (2013) Improving outcomes of biliary atresia: French national series 1986–2009. J Hepatol 58(6):1209–1217

    Article  PubMed  Google Scholar 

  19. Shneider BL, Magee JC, Karpen SJ, Rand EB, Narkewicz MR, Bass LM et al (2016) Total serum bilirubin within 3 months of hepatoportoenterostomy predicts short-term outcomes in biliary atresia. J Pediatr 170(211–7):e1-2

    Google Scholar 

  20. Shneider BL, Brown MB, Haber B, Whitington PF, Schwarz K, Squires R et al (2006) A multicenter study of the outcome of biliary atresia in the United States, 1997 to 2000. J Pediatr 148(4):467–474

    Article  PubMed  Google Scholar 

  21. van ErnestHeurn LW, Saing H, Tam PK (2003) Cholangitis after hepatic portoenterostomy for biliary atresia: a multivariate analysis of risk factors. J Pediatr 142(5):566–571

    Article  Google Scholar 

  22. Koga H, Wada M, Nakamura H, Miyano G, Okawada M, Lane GJ et al (2013) Factors influencing jaundice-free survival with the native liver in post-portoenterostomy biliary atresia patients: results from a single institution. J Pediatr Surg 48(12):2368–2372

    Article  PubMed  Google Scholar 

  23. Zhen C, Guoliang Q, Lishuang M, Zhen Z, Chen W, Jun Z et al (2015) Design and validation of an early scoring system for predicting early outcomes of type III biliary atresia after Kasai’s operation. Pediatr Surg Int 31:535–542

    Article  PubMed  Google Scholar 

  24. Wu ET, Chen HL, Ni YH, Lee PI, Hsu HY, Lai HS et al (2001) Bacterial cholangitis in patients with biliary atresia: impact on short-term outcome. Pediatr Surg Int 17(5–6):390–395

    CAS  PubMed  Google Scholar 

  25. Qiao G, Li L, Cheng W, Zhang Z, Ge J, Wang C (2015) Conditional probability of survival in patients with biliary atresia after Kasai portoenterostomy: a Chinese population-based study. J Pediatr Surg 50(8):1310–1315

    Article  PubMed  Google Scholar 

  26. Kiriyama S, Kozaka K, Takada T, Strasberg SM, Pitt HA, Gabata T et al (2018) Tokyo guidelines 2018: diagnostic criteria and severity grading of acute cholangitis (with videos). J Hepatobiliary Pancreat Sci 25(1):17–30

    Article  PubMed  Google Scholar 

  27. Baek SH, Kang JM, Ihn K, Han SJ, Koh H, Ahn JG (2020) The Epidemiology and etiology of cholangitis after Kasai portoenterostomy in patients with biliary atresia. J Pediatr Gastroenterol Nutr 70(2):171–177

    Article  PubMed  Google Scholar 

  28. Low Y, Vijayan V, Tan CE (2001) The prognostic value of ductal plate malformation and other histologic parameters in biliary atresia: an immunohistochemical study. J Pediatr 139(2):320–322

    Article  CAS  PubMed  Google Scholar 

  29. Safwan M, Ramachandran P, Vij M, Shanmugam N, Rela M (2015) Impact of ductal plate malformation on survival with native liver in children with biliary atresia. Pediatr Surg Int 31(9):837–843

    Article  PubMed  Google Scholar 

  30. Zani A, Quaglia A, Hadzic N, Zuckerman M, Davenport M (2015) Cytomegalovirus-associated biliary atresia: an aetiological and prognostic subgroup. J Pediatr Surg 50(10):1739–1745

    Article  PubMed  Google Scholar 

  31. So J, Kim A, Lee SH, Shin D (2020) Liver progenitor cell-driven liver regeneration. Exp Mol Med 52(8):1230–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Roskams TA, Libbrecht L, Desmet VJ (2003) Progenitor cells in diseased human liver. Semin Liver Dis 23(4):385–396

    Article  CAS  PubMed  Google Scholar 

  33. Michalopoulos GK, Khan Z (2015) Liver stem cells: experimental findings and implications for human liver disease. Gastroenterology 149(4):876–882

    Article  PubMed  Google Scholar 

  34. Raven A, Lu WY, Man TY, Ferreira-Gonzalez S, O’Duibhir E, Dwyer BJ et al (2017) Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature 547(7663):350–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sato K, Marzioni M, Meng F, Francis H, Glaser S, Alpini G (2019) Ductular reaction in liver diseases: pathological mechanisms and translational significances. Hepatology 69(1):420–430

    Article  PubMed  Google Scholar 

  36. Williams MJ, Clouston AD, Forbes SJ (2014) Links between hepatic fibrosis, ductular reaction, and progenitor cell expansion. Gastroenterology 146(2):349–356

    Article  PubMed  Google Scholar 

  37. Nagula S, Jain D, Groszmann RJ, Garcia-Tsao G (2006) Histological-hemodynamic correlation in cirrhosis-a histological classification of the severity of cirrhosis. J Hepatol 44(1):111–117

    Article  PubMed  Google Scholar 

  38. Holterman AX, Tan Y, Kim W, Yoo KW, Costa RH (2002) Diminished hepatic expression of the HNF-6 transcription factor during bile duct obstruction. Hepatology 35(6):1392–1399

    Article  CAS  PubMed  Google Scholar 

  39. Banales JM, Huebert RC, Karlsen T, Strazzabosco M, LaRusso NF, Gores GJ (2019) Cholangiocyte pathobiology. Nat Rev Gastroenterol Hepatol 16(5):269–281

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ikenaga N, Liu SB, Sverdlov DY, Yoshida S, Nasser I, Ke Q et al (2015) A new Mdr2(-/-) mouse model of sclerosing cholangitis with rapid fibrosis progression, early-onset portal hypertension, and liver cancer. Am J Pathol 185(2):325–334

    Article  CAS  PubMed  Google Scholar 

  41. Mohanty SK, Donnelly B, Temple H, Tiao GM (2019) A rotavirus-induced mouse model to study biliary atresia and neonatal cholestasis. Methods Mol Biol 1981:259–271

    Article  CAS  PubMed  Google Scholar 

  42. Guillot A, Guerri L, Feng D, Kim SJ, Ahmed YA, Paloczi J et al (2021) Bile acid-activated macrophages promote biliary epithelial cell proliferation through integrin alphavbeta6 upregulation following liver injury. J Clin Invest 131(9):e132305

    Article  CAS  PubMed Central  Google Scholar 

  43. Desmet VJ (1995) Histopathology of cholestasis. Verh Dtsch Ges Pathol 79:233–240

    CAS  PubMed  Google Scholar 

  44. Fabris L, Spirli C, Cadamuro M, Fiorotto R, Strazzabosco M (2017) Emerging concepts in biliary repair and fibrosis. Am J Physiol Gastrointest Liver Physiol 313(2):G102–G116

    Article  PubMed  PubMed Central  Google Scholar 

  45. Karpen SJ, Kelly D, Mack C, Stein P (2020) Ileal bile acid transporter inhibition as an anticholestatic therapeutic target in biliary atresia and other cholestatic disorders. Hepatol Int 14(5):677–689

    Article  PubMed  Google Scholar 

  46. Trauner M, Fuchs CD, Halilbasic E, Paumgartner G (2017) New therapeutic concepts in bile acid transport and signaling for management of cholestasis. Hepatology 65(4):1393–1404

    Article  PubMed  Google Scholar 

  47. Fabris L, Cadamuro M, Guido M, Spirli C, Fiorotto R, Colledan M et al (2007) Analysis of liver repair mechanisms in Alagille syndrome and biliary atresia reveals a role for notch signaling. Am J Pathol 171(2):641–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kerola A, Lampela H, Lohi J, Heikkila P, Mutanen A, Jalanko H et al (2017) Molecular signature of active fibrogenesis prevails in biliary atresia after successful portoenterostomy. Surgery 162(3):548–556

    Article  PubMed  Google Scholar 

  49. Bezerra JA, Spino C, Magee JC, Shneider BL, Rosenthal P, Wang KS et al (2014) Use of corticosteroids after hepatoportoenterostomy for bile drainage in infants with biliary atresia: the START randomized clinical trial. JAMA 311(17):1750–1759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Sharma S, Kumar L, Mohanty S, Kumar R, Datta Gupta S, Gupta DK (2011) Bone marrow mononuclear stem cell infusion improves biochemical parameters and scintigraphy in infants with biliary atresia. Pediatr Surg Int 27(1):81–89

    Article  PubMed  Google Scholar 

  51. Philips CA, Augustine P, Rajesh S, Ahamed R, George T, Padsalgi G et al (2020) Granulocyte colony-stimulating factor use in decompensated cirrhosis: lack of survival benefit. J Clin Exp Hepatol 10(2):124–134

    Article  PubMed  Google Scholar 

  52. Newsome PN, Fox R, King AL, Barton D, Than NN, Moore J et al (2018) Granulocyte colony-stimulating factor and autologous CD133-positive stem-cell therapy in liver cirrhosis (REALISTIC): an open-label, randomised, controlled phase 2 trial. Lancet Gastroenterol Hepatol 3(1):25–36

    Article  PubMed  Google Scholar 

  53. Chaudhuri J, Mitra S, Mukhopadhyay D, Chakraborty S, Chatterjee S (2012) Granulocyte colony-stimulating factor for preterms with sepsis and neutropenia: a randomized controlled trial. J Clin Neonatol 1(4):202–206

    Article  PubMed  PubMed Central  Google Scholar 

  54. Carr R, Modi N, Dore C. G-CSF and GM-CSF for treating or preventing neonatal infections. Cochrane Database Syst Rev. 2003;(3):CD003066

  55. Martins A, Han J, Kim SO (2010) The multifaceted effects of granulocyte colony-stimulating factor in immunomodulation and potential roles in intestinal immune homeostasis. IUBMB Life 62(8):611–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lages CS, Simmons J, Maddox A, Jones K, Karns R, Sheridan R et al (2017) The dendritic cell-T helper 17-macrophage axis controls cholangiocyte injury and disease progression in murine and human biliary atresia. Hepatology 65(1):174–188

    Article  CAS  PubMed  Google Scholar 

  57. Jeffery HC, Hunter S, Humphreys EH, Bhogal R, Wawman RE, Birtwistle J et al (2019) Bidirectional cross-talk between biliary epithelium and Th17 cells promotes local Th17 expansion and bile duct proliferation in biliary liver diseases. J Immunol 203(5):1151–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cameron-Christie SR, Wilde J, Gray A, Tankard R, Bahlo M, Markie D et al (2018) Genetic investigation into an increased susceptibility to biliary atresia in an extended New Zealand Maori family. BMC Med Genomics 11(1):121

    Article  PubMed  PubMed Central  Google Scholar 

  59. Vic P, Gestas P, Mallet EC, Arnaud JP (1994) Biliary atresia in French Polynesia. Retrospective study of 10 years. J Arch Pediatr. 1(7):646–651

    CAS  Google Scholar 

  60. Liu MB, Huong TB, Hoang X, Doan L, Trinh S, Anh Nguyen HP et al (2017) Biliary atresia in Vietnam: management and the burden of disease. Surgery 161(2):533–537

    Article  PubMed  Google Scholar 

  61. Nguyen TC, Robert A, Nguyen PV, Nguyen NM, Truong DQ, Goyens P et al (2016) Current status and actual need for pediatric liver transplantation in Southern Vietnam. Pediatr Transplant 20(2):215–221

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Funding is provided by Cures Within Reach and by Prometheus USA organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AiXuan Holterman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.P.A., Ren, J., Butler, M. et al. Study protocol of Phase 2 open-label multicenter randomized controlled trial for granulocyte-colony stimulating factor (GCSF) in post-Kasai Type 3 biliary atresia. Pediatr Surg Int 38, 1019–1030 (2022). https://doi.org/10.1007/s00383-022-05115-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-022-05115-0

Keywords

Navigation