Skip to main content

Advertisement

Log in

The changes in south Asian summer monsoon circulation during the mid-Piacenzian warm period

  • Original Article
  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Mid-Piacenzian (MP; approximately 3.3-3.0 Ma) was a relatively warm period in geological time and this past warming climate was in some respects comparable to the near future greenhouse warming climate projections. How the regional summer monsoons responded to the MP warming is an important scientific concern. Using the Pliocene Model Intercomparison Project phase 2 (PlioMIP2) simulations, this study explores the changes in South Asian summer monsoon (SASM) circulation during the MP based on the 3-pattern decomposition of global atmospheric circulation (3P-DGAC) method. The results show that both the zonal and meridional SASM circulations remarkably strengthened during the MP warm period. This is fundamentally different from a weakened SASM circulation response to the near future greenhouse warming forcing that has been reported by previous studies. On the one hand, the enhanced zonal SASM circulation during the MP was closely linked with warmer mid-upper tropospheric temperature over Eastern Eurasia than the tropical Indian Ocean. The increased meridional temperature gradient can induce easterly (westerly) anomalies at the upper-level (low-level) troposphere across the SASM region via the thermal-wind relation, strengthening the zonal SASM circulation. On the other hand, the anomalous convective heating associated with excessively increased North African summer monsoon rainfall during the MP period warms the mid-upper troposphere over North Africa, resulting in an increased west-minus-east temperature gradient across the SASM region. Such a zonal temperature gradient change at the mid-upper troposphere can enhance the meridional SASM circulation as well. Implications of the fundamental difference between the SASM circulation responses to the MP and near future warming climates are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The GPCP precipitation and NCEP2 wind data are obtained from https://psl.noaa.gov/data/gridded/data.gpcp.html and https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html, respectively. The PlioMIP2 outputs from CESM2, EC-Earth3-LR, GISS-E2-1-G, IPSL-CM6A-LR, and NorESM1-F can be obtained from the Earth System Grid Federation (ESGF, https://esgf-node.llnl.gov/search/cmip6/, last access: 1 October 2022). The PlioMIP2 outputs from CCSM4 and CESM1.2 can be obtained from https://www.cesm.ucar.edu/models/ (last access: 11 November 2021, Feng et al. 2020, https://doi.org/10.1029/2019MS002033). Other PlioMIP2 outputs, please send a request to Alan M. Haywood (a.m.haywood@leeds.ac.uk).

References

  • Adler RF, Sapiano M, Huffman GJ, Wang J-J, Gu G, Bolvin D, Chiu L, Schneider U, Becker A, Nelkin E, Xie P, Ferraro R, Shin D-B (2018) The global precipitation climatology project (GPCP) monthly analysis (New Version 2.3) and a review of 2017 global precipitation. Atmosphere, 9: 138

  • Ashfaq M, Shi Y, Tung WM, Trapp RJ, Gao X, Pal JS, Diffenbaugh NS (2009) Suppression of south Asian summer monsoon precipitation in the 21st century. Geophys Res Lett, 36

  • Baatsen ML, von der Heydt AS, Kliphuis MA, Oldeman AM, Weiffenbach JE (2022) Warm mid-pliocene conditions without high climate sensitivity: the CCSM4-Utrecht (CESM 1.0.5) contribution to the PlioMIP2. Clim Past 18:657–679

    Article  Google Scholar 

  • Ballantyne AP, Rybczynski N, Baker PA, Harington CR, White D (2006) Pliocene Arctic temperature constraints from the growth rings and isotopic composition of fossil larch. Palaeogeogr Palaeoclimatol Palaeoecol 242:188–200

    Article  Google Scholar 

  • Banakar VK, Oba T, Chodankar AR, Kuramoto T, Yamamoto M, Minagawa M (2005) Monsoon related changes in sea surface productivity and water column denitrification in the Eastern Arabian Sea during the last glacial cycle. Mar Geol 219:99–108

    Article  Google Scholar 

  • Berntell E, Zhang Q, Li Q, Haywood AM, Lunt D (2021) Mid-pliocene West African Monsoon Rainfall as simulated in the PlioMIP2 ensemble. Clim Past 17:1777–1794

    Article  Google Scholar 

  • Bollasina MA (2014) Probing the monsoon pulse. Nat Clim Change 4:422–423

    Article  Google Scholar 

  • Burke KD, Williams JW, Chandler MA, Haywood AM, Lunt DJ, Otto-Bliesner BL (2018) Pliocene and Eocene provide best analogs for near-future climates. Proceedings of the National Academy of Sciences, 115: 13288–13293

  • Burls NJ, Fedorov AV (2017) Wetter subtropics in a warmer world: contrasting past and future hydrological cycles. Proceedings of the National Academy of Sciences, 114: 12888–12893

  • Chakraborty A, Nanjundiah RS, Srinivasan J (2009) Impact of African orography and the Indian summer monsoon on the low-level Somali jet. Int J Climatol 29:983–992

    Article  Google Scholar 

  • Chandan D, Peltier WR (2017) Regional and global climate for the mid-pliocene using the university of Toronto version of CCSM4 and PlioMIP2 boundary conditions. Clim Past 13:919–942

    Article  Google Scholar 

  • Chang Z, Xiao J, Lü L. and, Yao H (2010) Abrupt shifts in the Indian monsoon during the Pliocene marked by high-resolution terrestrial records from the Yuanmou Basin in Southwest China. J Asian Earth Sci 37:166–175

    Article  Google Scholar 

  • Cheng J, Hu S, Gao C, Hou X, Xu Z, Feng G (2020) On the discrepancies in the changes in the annual mean Hadley circulation among different regions and between CMIP5 models and reanalyses. Theoret Appl Climatol 141:1475–1491

    Article  Google Scholar 

  • Chen L, Li T, Yu Y (2015) Causes of strengthening and weakening of ENSO Amplitude under global warming in four CMIP5 models. J Clim 28:3250–3274

    Article  Google Scholar 

  • Chen L, Li T, Yu Y, Behera S (2017) A possible explanation for the divergent projection of ENSO amplitude change under global warming. Clim Dyn 49:3799–3811

    Article  Google Scholar 

  • Chen L, Zheng W, Pascale B (2019) Towards understanding the suppressed ENSO activity during Mid-holocene in PMIP2 and PMIP3 simulations. Clim Dyn 53:1095–1110

    Article  Google Scholar 

  • Chen X, Zhou T (2015) Distinct effects of global mean warming and regional sea surface warming pattern on projected uncertainty in the south Asian summer monsoon. Geophys Res Lett 42:9433–9439

    Article  Google Scholar 

  • Contoux C, Dumas C, Ramstein G, Jost A, Dolan AM (2015) Modelling Greenland ice sheet inception and sustainability during the late Pliocene. Earth Planet Sci Lett 424:295–305

    Article  CAS  Google Scholar 

  • Cook KH (2003) Role of continents in driving the Hadley cells. J Atmos Sci 60:957–976

    Article  Google Scholar 

  • Csank AZ, Patterson WP, Eglington BM, Rybczynski N, Basinger JF (2011) Climate variability in the early Pliocene Arctic: annually resolved evidence from stable isotope values of sub-fossil wood, vol 308. Ellesmere Island, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, pp 339–349

    Google Scholar 

  • Dai A, Li H, Sun Y, Hong LC, Ho L, Chou C, Zhou T (2013) The relative roles of upper and lower tropospheric thermal contrasts and tropical influences in driving Asian summer monsoons. J Geophys Research: Atmos 118:7024–7045

    Article  Google Scholar 

  • de Nooijer W, Zhang Q, Li Q, Zhang Q, Li X, Zhang Z, Guo C, Nisancioglu KH, Haywood AM, Tindall JC, Hunter SJ (2020) Evaluation of Arctic warming in mid-pliocene climate simulations. Clim Past 16:2325–2341

    Article  Google Scholar 

  • Dowsett H, Dolan A, Rowley D, Moucha R, Forte AM, Mitrovica JX, Pound M, Salzmann U, Robinson M, Chandler M, Foley K, Haywood A (2016) The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction. Clim Past 12:1519–1538

    Article  Google Scholar 

  • Dowsett H, Robinson M, Haywood A, Salzmann U, Hill D, Sohl L, Chandler M, Williams M, Foley K, Stoll D (2010) The PRISM3D paleoenvironmental reconstruction. Stratigraphy 7:123–139

    Article  Google Scholar 

  • Fedorov AV, Dekens PS, McCarthy M, Ravelo AC, DeMenocal PB, Barreiro M, Pacanowski RC, Philander SG (2006) The Pliocene paradox (mechanisms for a permanent El Niño). Science 312:1485–1489

    Article  CAS  Google Scholar 

  • Feng R, Bhattacharya T, Otto-Bliesner BL, Brady EC, Haywood AM, Tindall JC, Hunter SJ, Abe-Ouchi A, Chan WL, Kageyama M, Contoux C (2022) Past terrestrial hydroclimate sensitivity controlled by Earth system feedbacks. Nat Commun 13:1–11

    Google Scholar 

  • Feng R, Otto-Bliesner BL, Brady EC, Rosenbloom N (2020) Increased climate response and earth system sensitivity from CCSM4 to CESM2 in Mid-pliocene simulations. J Adv Model Earth Syst 12:e2019MS002033

    Article  Google Scholar 

  • Fu C, Fletcher JO (1985) The relationship between Tibet tropical ocean thermal contrast and interannual variability of Indian monsoon rainfall. J Appl Meteorol Climatology 24:841–847

    Article  Google Scholar 

  • Funder S, Bennike O, Bocher J, Israelson C, Petersen KS, Simonarson LA (2001) Late Pliocene Greenland-the Kap København formation in North Greenland. Bull Geol Soc Den 48:117–134

    Google Scholar 

  • Gaur R, Chopra SRK (1984) Taphonomy, fauna, environment and ecology of upper sivaliks (Plio-Pleistocene) near Chandigarh, India. Nature 308:353–355

    Article  Google Scholar 

  • Goswami BN, Krishnamurthy V. and, Annmalai H (1999) A broad-scale circulation index for the interannual variability of the Indian summer monsoon. Q J R Meteorol Soc 125:611–633

    Google Scholar 

  • Han Z, Li G, Zhang Q (2023) Changes in Sahel summer rainfall in a global warming climate: contrasting the mid-pliocene and future regional hydrological cycles. Clim Dyn 61:1353–1370

    Article  Google Scholar 

  • Han Z, Zhang Q, Li Q, Feng R, Haywood AM, Tindall JC, Hunter SJ, Otto-Bliesner BL, Brady EC, Rosenbloom N, Zhang Z, Li X, Guo C, Nisancioglu KH, Stepanek C, Lohmann G, Sohl LE, Chandler MA, Tan N, Ramstein G, Baatsen MLJ, Heydt ASVD, Chandan D, Peltier WR, Williams CJR, Lunt DJ, Cheng J, Wen Q, Burls NJ (2021) Evaluating the large-scale hydrological cycle response within the PlioMIP2 ensemble. Clim Past 17:2537–2558

    Article  Google Scholar 

  • Haywood AM, Dowsett HJ, Dolan AM (2016b) Integrating geological archives and climate models for the Mid-pliocene warm period. Nat Commun 7:1–14

    Article  Google Scholar 

  • Haywood AM, Dowsett HJ, Dolan AM, Rowley D, Abe-Ouchi A, Otto-Bliesner B, Chandler MA, Hunter SJ, Lunt DJ, Pound M, Salzmann U (2016a) The Pliocene Model Intercomparison Project (PlioMIP) phase 2: scientific objectives and experimental design. Clim Past 12:663–675

    Article  Google Scholar 

  • Haywood AM, Hill DJ, Dolan AM, Otto-Bliesner BL, Bragg F, Chan WL, Chandler MA, Contoux C, Dowsett HJ, Jost A, Kamae Y, Lohmann G, Lunt DJ, Abe-Ouchi A, Pickering SJ, Ramstein G, Rosenbloom NA, Salzmann U, Sohl L, Stepanek C, Ueda H, Yan Q. and, Zhang Z (2013) Large-scale features of Pliocene climate: results from the Pliocene model intercomparison project. Clim Past 9:191–209

    Article  Google Scholar 

  • Haywood AM, Tindall JC, Dowsett HJ, Dolan AM, Lunt DJ (2020) The Pliocene model intercomparison project phase 2: large-scale climate features and climate sensitivity. Clim Past 16:2095–2123

    Article  Google Scholar 

  • Hoorn C, Ohja T, Quade J (2000) Palynological evidence for vegetation development and climatic change in the Sub-himalayan Zone (Neogene, Central Nepal). Palaeogeogr Palaeoclimatol Palaeoecol 163:133–161

    Article  Google Scholar 

  • Hunter SJ, Haywood AM, Dolan AM, Tindall JC (2019) The HadCM3 contribution to PlioMIP phase 2. Clim Past 15:1691–1713

    Article  Google Scholar 

  • Hu S, Cheng J, Chou J (2017) Novel three-pattern decomposition of global atmospheric circulation: generalization of traditional two-dimensional decomposition. Clim Dyn 49:3573–3586

    Article  Google Scholar 

  • Hu S, Cheng J, Xu M, Chou J (2018b) Three-pattern decomposition of global atmospheric circulation: part II–dynamical equations of horizontal, meridional and zonal circulations. Clim Dyn 50:2673–2686

    Article  Google Scholar 

  • Hu S, Chou J, Cheng J (2018a) Three-pattern decomposition of global atmospheric circulation: part I-Decomposition model and theorems. Clim Dyn 50:2355–2368

    Article  Google Scholar 

  • Igarashi Y, Yoshida M, Tabata H (1988) History of vegetation and climate in the Kathmandu Valley. Proc Indian Natn Sci Acad 54:550–563

  • Jin Q, Wang C (2017) A revival of Indian summer monsoon rainfall since 2002. Nat Clim Change 7:587–594

    Article  Google Scholar 

  • Johnson NC, Xie S-P (2010) Changes in the sea surface temperature threshold for tropical convection. Nat Geosci 3:842–845

    Article  CAS  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP–DOE AMIP-II; reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1644

    Article  Google Scholar 

  • Kelley M, Schmidt GA, Nazarenko L, Bauer SE, Ruedy R, Russell GL, Ackerman AS, Aleinov I, Bauer M, Bleck R, Canuto V, Cesana G, Cheng Y, Clune TL, Cook BI, Cruz CA, Del Genio AD, Elsaesser GS, Faluvegi G, Kiang NY, Kim D, Lacis AA, Leboissetier A, LeGrande AN, Lo KK, Marshall J, Matthews EE, McDermid S, Mezuman K, Miller RL, Murray LT, Oinas V, Orbe C, García-Pando P, Perlwitz C, Puma JP, Rind MJ, Romanou D, Shindell A, Sun DT, Tausnev S, Tselioudis NTK, Weng G, Wu E J. and, Yao M-S (2020) GISS-E2.1: configurations and climatology. Journal of Advances in Modeling Earth Systems, 12: e2019MS002025.

  • Kitoh A (2017) The Asian monsoon and its future change in climate models: a review. Journal of the Meteorological Society of Japan. Ser. II

  • Kou X-Y, Ferguson DK, Xu JX, Wang YF, Li CS (2006) The reconstruction of paleovegetation and paleoclimate in the late pliocene of West Yunnan, China. Clim Change 77:431–448

    Article  Google Scholar 

  • Krishnan R, Sabin TP, Ayantika DC, Sugi M, Kitoh A, Murakami H, Turner A, Slingo JM, Rajendran K (2013) Will the south Asian monsoon overturning circulation stabilize any further? Clim Dyn 40:187–211

    Article  Google Scholar 

  • Kuechler RR, Dupont LM, Schefuß E (2018) Hybrid insolation forcing of Pliocene monsoon dynamics in West Africa. Clim Past 14:73–84

    Article  Google Scholar 

  • Li G, Chen L, Lu B (2023) A physics-based empirical model for the seasonal prediction of the central China July precipitation. Geophys Res Lett, 50: e2022GL101463.

  • Li G, Xie S-P (2012) Origins of tropical-wide SST biases in CMIP multi-model ensembles. Geophys Res Lett 39:L22703

    Article  Google Scholar 

  • Li G, Xie S-P (2014) Tropical biases in CMIP5 multimodel ensemble: the excessive equatorial Pacific cold tongue and double ITCZ problems. J Clim 27:1765–1780

    Article  Google Scholar 

  • Li G, Xie S-P, He C, Chen Z (2017) Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall. Nat Clim Change 7:708–712

    Article  Google Scholar 

  • Lin X, Lu B, Li G, Gao C, Chen L (2023) Asymmetric impacts of El Niño-Southern Oscillation on the winter precipitation over South China: the role of the India-Burma Trough. Clim Dyn 61:2211–2227

    Article  Google Scholar 

  • Li X, Guo C, Zhang Z, Ottera OH, Zhang R (2020) PlioMIP2 simulations with NorESM-L and NorESM1-F. Clim Past 16:183–197

    Article  Google Scholar 

  • Li X, Jiang D, Tian Z, Yang Y (2018) Mid-piacenzian global land monsoon from PlioMIP1 simulations. Palaeogeogr Palaeoclimatol Palaeoecol 512:56–70

    Article  Google Scholar 

  • Lurton T, Balkanski Y, Bastrikov V, Bekki S, Bopp L, Braconnot P, Brockmann P, Cadule P, Contoux C, Cozic A, Cugnet D, Dufresne JL, Éthe C, Foujols MA, Ghattas J, Hauglustaine D, Hu RM, Kageyama M, Khodri M, Lebas N, Levavasseur G, Marchand M, Ottle C, Peylin P, Sima A, Szopa S, Thieblemont R, Vuichard N, Boucher O (2020) Implementation of the CMIP6 forcing data in the IPSL-CM6A-LR model. Journal of Advances in Modeling Earth Systems, 12, p.e2019MS001940

  • Ma J, Yu JY (2014) Paradox in south Asian summer monsoon circulation change: lower tropospheric strengthening and upper tropospheric weakening. Geophys Res Lett 41:2934–2940

    Article  Google Scholar 

  • Miller KG, Wright JD, Browning JV, Kulpecz A, Kominz M, Naish TR, Cramer BS, Rosenthal Y, Peltier WR, Sosdian S (2012) High tide of the warm pliocene: implications of global sea level for Antarctic deglaciation. Geology 40:407–410

    Article  CAS  Google Scholar 

  • Owen RB, Utha-Aroon C (1999) Diatomaceous sedimentation in the tertiary Lampang basin, northern Thailand. J Paleolimnol 22:81–95

    Article  Google Scholar 

  • Peltier WR, Vettoretti G (2014) Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: a kicked salt oscillator in the Atlantic. Geophys Res Lett 41:7306–7313

    Article  Google Scholar 

  • Prescott CL, Haywood AM, Dolan AM, Hunter SJ, Tindall JC (2019) Indian monsoon variability in response to orbital forcing during the late Pliocene. Glob Planet Change 173:33–46

    Article  Google Scholar 

  • Robinson MM, Dowsett HJ, Chandler MA (2013) Pliocene Role in Assessing Future Climate Impacts. Eos, Transactions American Geophysical Union, 89: 501–502

  • Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, Esch M, Giorgetta MA, Schlese U, Schulzweida U (1996) The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate. Max-Planck-Institut für Meteorologie Rep 218:90 [Available online at. www.mpimet.mpg.de/fileadmin/publikationen/Reports/MPI-Report_218.pdf

    Google Scholar 

  • Salzmann U, Haywood AM, Lunt DJ, Valdes PJ, Hill DJ (2008) A new global biome reconstruction and data-model comparison for the Middle Pliocene. Glob Ecol Biogeogr 17:432–447

    Article  Google Scholar 

  • Sanyal P, Bhattacharya S, Kumar R, Ghosh S, Sangode S (2004) Mio-Pliocene monsoonal record from himalayan foreland basin (Indian Siwalik) and its relation to vegetational change, vol 205. Palaeogeography, Palaeoclimatology, Palaeoecology, pp 23–41

    Google Scholar 

  • Seth A, Giannini A, Rojas M, Rauscher SA, Bordoni S, Singh D, Camargo SJ (2019) Monsoon responses to climate changes-connecting past, present and future. Curr Clim Change Rep 5:63–79

    Article  Google Scholar 

  • Singh S, Parkash B, Awasthi AK, Singh T (2012) Palaeoprecipitation record using O-isotope studies of the Himalayan Foreland Basin sediments, NW India, vol 331. Palaeogeography, Palaeoclimatology, Palaeoecology, pp 39–49

    Google Scholar 

  • Sobel AH, Held IM, Bretherton CS (2002) The ENSO signal in tropical tropospheric temperature. J Clim 15:2702–2706

    Article  Google Scholar 

  • Sooraj KP, Terray P, Mujumdar M (2015) Global warming and the weakening of the Asian summer monsoon circulation: assessments from the CMIP5 models. Clim Dyn 45:233–252

    Article  Google Scholar 

  • Stepanek C, Samakinwa E, Knorr G, Lohmann G (2020) Contribution of the coupled atmosphere-ocean-sea ice-vegetation model COSMOS to the PlioMIP2. Clim Past 16:2275–2323

    Article  Google Scholar 

  • Sun B-N, Wu J-Y, Liu Y-S, Ding S-T, Li X-C, Xie S-P, Yan D-F, Lin Z-C (2011) Reconstructing Neogene vegetation and climates to infer tectonic uplift in western Yunnan, China, vol 304. Palaeogeography, Palaeoclimatology, Palaeoecology, pp 328–336

    Google Scholar 

  • Sun Y, Ramstein G, Contoux C, Zhou T (2013) A comparative study of large-scale atmospheric circulation in the context of a future scenario (RCP4. 5) and past warmth (mid-Pliocene). Clim Past 9:1613–1627

    Article  Google Scholar 

  • Su T, Jacques FMB, Spicer RA, Liu YS, Huang YJ, Xing YW, Zhou ZK (2013) Post-Pliocene establishment of the present monsoonal climate in SW China: evident from the late Pliocene Longmen megaflora. Clim Past 9:1911–1920

  • Tan N, Contoux C, Ramstein G, Sun Y, Dumas C, Sepulchre P, Guo Z (2020) Modeling a modern-like pCO2 warm period (Marine Isotope Stage KM5c) with two versions of an Institut Pierre Simon Laplace atmosphere–ocean coupled general circulation model. Clim Past 16:1–16

    Article  Google Scholar 

  • Thompson RS, Fleming RF (1996) Middle Pliocene vegetation: reconstructions, paleoclimatic inferences, and boundary conditions for climate modeling. Mar Micropaleontol 27:27–49

    Article  Google Scholar 

  • Tierney JE, Haywood AM, Feng R, Bhattacharya T, Otto-Bliesner BL (2019) Pliocene warmth consistent with greenhouse gas forcing. Geophys Res Lett 46:9136–9144

    Article  Google Scholar 

  • Tiwari M, Ramesh R, Somayajulu BLK, Jull AJT, Burr GS (2006) Paleomonsoon precipitation deduced from a sediment core from the equatorial Indian Ocean. Geo-Mar Lett 26:23–30

    Article  CAS  Google Scholar 

  • Van Campo E (1991) Pollen transport into Arabian Sea sediments. In Proceedings of the ocean drilling program, scientific results (Vol. 117, pp. 277–281). Ocean Drilling Program, Texas A&M University

  • Wang L, Cheng Y, Chen X, Zhou T (2024) Projected changes in Onset of Summer Monsoon over the south Asian marginal seas modulated by Intraseasonal Oscillation. J Clim. https://doi.org/10.1175/JCLI-D-23-0257.1

    Article  Google Scholar 

  • Wang L, Li T, Maloney E, Wang B (2017a) Fundamental causes of propagating and nonpropagating MJOs in MJOTF/GASS models. J Clim 30:3743–3769

    Article  Google Scholar 

  • Wang PX, Wang B, Cheng H, Fasullo J, Guo Z, Kiefer T, Liu Z (2017b) The global monsoon across time scales: mechanisms and outstanding issues. Earth-Sci Rev 174:84–121

    Article  CAS  Google Scholar 

  • Wang WM, Shu JW (2004) Late cenozoic palynoflfloras from Qujing Basin, Yunnan, China (in Chinese). Acta Palaeontol Sinica 43:254–261

    CAS  Google Scholar 

  • Wang Y, Cheng H, Edwards RL, He Y, Kong X, An Z, Wu J, Kelly MJ, Dykoski CA, Li XD (2005) The holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308:854–857

    Article  CAS  Google Scholar 

  • Wara MW, Ravelo AC, Delaney ML (2005) Permanent El Niño-like conditions during the Pliocene warm period. Science 309:758–761

    Article  CAS  Google Scholar 

  • Webster PJ, Fasullo J (2003) MONSOON: dynamical theory. Encyclopedia of atmospheric sciences. Academic, pp 1370–1386

  • Webster PJ, Magaña VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Research: Oceans 103:14451–14510

    Article  Google Scholar 

  • Williams CJR, Sellar AA, Ren X, Haywood AM, Hopcroft P, Hunter SJ, Roberts WHG, Smith RS, Stone EJ, Tindall JC, Lunt DJ (2021) Simulation of the mid-pliocene warm period using HadGEM3: experimental design and results from model-model and model-data comparison. Clim Past 17:2139–2163

    Article  Google Scholar 

  • Xavier PK, Marzin C, Goswami BN (2007) An objective definition of the Indian summer monsoon season and a new perspective on the ENSO-monsoon relationship. Q J Royal Meteorological Society: J Atmospheric Sci Appl Meteorol Phys Oceanogr 133:749–764

    Article  Google Scholar 

  • Xie S, Bainian S, Wu J, Lin Z, Yan D. and, Xiao L (2012) Palaeoclimatic estimates for the late Pliocene based on leaf physiognomy from western Yunnan, China. Turkish J Earth Sci 21:251–261

    Google Scholar 

  • Yan Q, Wei T, Zhang Z (2018) Reexamination of the late pliocene climate over China using a 25-km resolution general circulation model. J Clim 32:897–916

    Article  Google Scholar 

  • Yan Q, Zhang Z, Wang H, Zhang R (2014) Simulation of Greenland ice sheet during the Mid-pliocene warm period. Chin Sci Bull 59:201–211

    Article  CAS  Google Scholar 

  • Yao YF, Bruch AA, Cheng YM, Mosbrugger V, Wang YF, Li CS (2012) Monsoon versus uplift in southwestern China–late pliocene climate in Yuanmou Basin, Yunnan. PLoS ONE 7:e37760

    Article  CAS  Google Scholar 

  • Zhang Q, Berntell E, Axelsson J, Chen J, Han Z, de Nooijer W, Lu Z, Li Q, Zhang Q, Wyser K, Yang S (2021a) Simulating the Mid-holocene, last interglacial and mid-pliocene climate with EC-Earth3-LR. Geosci Model Dev 14:1147–1169

    Article  Google Scholar 

  • Zhang R, Jiang D (2014) Impact of vegetation feedback on the Mid-pliocene warm climate. Adv Atmos Sci 31:1407–1416

    Article  Google Scholar 

  • Zhang R, Jiang D, Zhang Z, Yan Q, Li X (2019) Modeling the late Pliocene global monsoon response to individual boundary conditions. Clim Dyn 53:4871–4886

    Article  Google Scholar 

  • Zhang R, Zhang Z, Jiang D, Yan Q, Zhou X, Cheng Z (2016) Strengthened African summer monsoon in the mid-piacenzian. Adv Atmos Sci 33:1061–1070

    Article  CAS  Google Scholar 

  • Zhang Z, Li G (2022) Uncertainty in the projected changes of Sahel summer rainfall under global warming in CMIP5 and CMIP6 multi-model ensembles. Clim Dyn 59:3579–3597

    Article  Google Scholar 

  • Zhang Z, Li X, Guo C, Otterå OH, Nisancioglu KH, Tan N, Contoux C, Ramstein G, Feng R, Otto-Bliesner BL, Brady E (2021b) Mid-pliocene Atlantic Meridional Overturning Circulation simulated in PlioMIP2. Clim Past 17:529–543

    Article  Google Scholar 

  • Zhao Z, Qiao Y, Wang S, Yao H, Wang Y, Li C, Fu J, Liu Z, Li M, Miao Q, Jiang F (2008) Late Cenozoic Geology and Paleo-environment Change in the Eastern Edge of Qinghai‐Xizang Plateau. Acta Geologica Sinica‐English Edition, 82: 959 – 66

  • Zheng J, Zhang Q, Li Q, Zhang Q, Cai M (2019) Contribution of sea ice albedo and insulation effects to Arctic amplification in the EC-Earth Pliocene simulation. Clim Past 15:291–305

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the climate modeling groups (Table 1) for producing their model outputs, the U.S. Department of Energy’s Program for Climate Model Diagnostics and Inter-comparison for providing coordinating support and leading development of software infrastructure in partnership with the Global Organization for Earth System Science Portals, and the World Climate Research Programme’s Working Group on Coupled Modelling for the CMIP6.

Funding

This work was supported by the National Natural Science Foundation of China (42305053, 41975100, and 42106016), the China Postdoctoral Science Foundation (2022M711003), the Independent Research Project of the National Key Laboratory of Water Disaster Prevention (5230248D2), the State Key Laboratory of Loess and Quaternary Geology (No. SKLLQG2212), the MEL Visiting Fellowship (MELRS2342), and the Key Scientific and Technological Project of the Ministry of Water Resources, China (SKS-2022001).

Author information

Authors and Affiliations

Authors

Contributions

G.L. conceptualized the idea for the study. Z.H. performed the analysis. Z.H. and G.L. wrote the manuscript.

Corresponding author

Correspondence to Gen Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Li, G. The changes in south Asian summer monsoon circulation during the mid-Piacenzian warm period. Clim Dyn (2024). https://doi.org/10.1007/s00382-024-07179-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00382-024-07179-1

Keywords

Navigation