Skip to main content

Advertisement

Log in

Mechanisms behind large-scale inconsistencies between regional and global climate model-based projections over Europe

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Important discrepancies in the large-scale summer climate change projections were recently detected between the global and regional climate models (RCM/GCM) in the EURO-CORDEX ensemble for several variables including surface temperature, total precipitation, and surface solar radiation. In this study, we use a new experimental framework inspired by the Big-Brother–Little-Brother protocol to explore the mechanisms responsible for generating large-scale discrepancies in future projections between GCM/RCM pairs over Europe in summer. Starting from past and future simulations with a perfect GCM/RCM pair (same resolution, same physics, same forcings), we then disentangle the role of potential sources of GCM/RCM inconsistency by carrying out targeted sensitivity studies. We show that by following such a perfect approach, it is possible to obtain a GCM/RCM pair without statistically significant inconsistencies in projected climate change. Such discrepancies are mainly generated by differences in aerosols representation and atmospheric physics. The role of plant physiology is limited and unlikely to be the dominant factor in the detected discrepancies. Finally, it is unlikely that the discrepancies in the EURO-CORDEX ensemble projections are a result of the upscaled added value, as we show that the effect of increased resolution is not strong enough and mostly limited to areas with complex topography. These findings raise important questions about the current practices in regional climate modelling. In the short term, implementing RCM external forcings consistent with the driving GCM can significantly improve the situation at low cost. In the long term, adopting a seamless strategy in developing the GCM/RCM models should be questioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability Statement

The datasets and the codes generated for the current study are available under request from the corresponding author.

References

  • Alexandru A, de Elia R, Laprise R (2007) Internal variability in regional climate downscaling at the seasonal scale. Mon Weather Rev 135(9):3221–3238

    Google Scholar 

  • Arias PA, Bellouin N, Coppola E, Jones RG, Krinner G, Marotzke J, Naik V, Palmer MD, Plattner G-K, Rogelj J, Rojas M, Sillmann J, Storelvmo T, Thorne PW, Trewin B, Rao KA, Adhikary B, Allan RP, Armour K, Bala G, Barimalala R, Berger S, Canadell JG, Cassou C, Cherchi A, Collins W, Collins WD, Connors SL, Corti S, Cruz F, Dentener FJ, Dereczynski C, Luca AD, Niang AD, Doblas-Reyes FJ, Dosio A, Douville H, Engelbrecht F, Eyring V, Fischer E, Forster P, Fox-Kemper B, Fuglestvedt JS, Fyfe JC, Gillett NP, Goldfarb L, Gorodetskaya I, Gutierrez JM, Hamdi R, Hawkins E, Hewitt HT, Hope P, Islam AS, Jones C, Kaufman DS, Kopp RE, Kosaka Y, Kossin J, Krakovska S, Lee J-Y, Li J, Mauritsen T, Maycock TK, Meinshausen M, Min S-K, Monteiro PMS, Ngo-Duc T, Otto F, Pinto I, Pirani A, Raghavan K, Ranasinghe R, Ruane AC, Ruiz L, Sallée J-B, Samset BH, Sathyendranath S, Seneviratne SI, Sörensson AA, Szopa S, Takayabu I, Treguier A-M, van den Hurk B, Vautard R, von Schuckmann K, Zaehle S, Zhang X, Zickfeld K, Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (2021) Technical summary. In: Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change

  • Bador M, Terray L, Boe J, Somot S, Alias A, Gibelin A-L, Dubuisson B (2017) Future summer mega-heatwave and record-breaking temperatures in a warmer France climate. Environ Res Lett 12(7):074025.

    Google Scholar 

  • Bartók B, Wild M, Folini D, Lüthi D, Kotlarski S, Schär C, Vautard R, Jerez S, Imecs Z (2017) Projected changes in surface solar radiation in CMIP5 global climate models and in EURO-CORDEX regional climate models for Europe. Clim Dyn 49(7):2665–2683

    Google Scholar 

  • Bellprat O, Kotlarski S, Lüthi D, De Elía R, Frigon A, Laprise R, Schär C (2016) Objective calibration of regional climate models: application over Europe and North America. J Clim 29(2):819–838

    Google Scholar 

  • Boé J (2021) The physiological effect of CO2 on the hydrological cycle in summer over Europe and land–atmosphere interactions. Clim Change 167(1):1–20

    Google Scholar 

  • Boé J, Somot S, Corre L, Nabat P (2020) Large discrepancies in summer climate change over Europe as projected by global and regional climate models: causes and consequences. Clim Dyn 54(5):2981–3002

    Google Scholar 

  • Chen L (2021) Uncertainties in solar radiation assessment in the united states using climate models. Clim Dyn 56(1):665–678

    Google Scholar 

  • Colin J, Déqué M, Radu R, Somot S (2010) Sensitivity study of heavy precipitation in limited area model climate simulations: influence of the size of the domain and the use of the spectral nudging technique. Tellus A Dyn Meteorol Oceanogr 62(5):591–604

    Google Scholar 

  • Coppola E, Nogherotto R, Ciarlò JM, Giorgi F, van Meijgaard E, Kadygrov N et al. (2021) Assessment of the European climate projections as simulated by the large EURO-CORDEX regional and global climate model ensemble. J Geophys Res Atmos 126(4)

  • Crétat J, Pohl B (2012) How physical parameterizations can modulate internal variability in a regional climate model. J Atmos Sci 69(2):714–724

    Google Scholar 

  • Daniel M, Lemonsu A, Déqué M, Somot S, Alias A, Masson V (2019) Benefits of explicit urban parameterization in regional climate modeling to study climate and city interactions. Clim Dyn 52(5):2745–2764

    Google Scholar 

  • Davies H (1976) A lateral boundary formulation for multi-level prediction models. Q J R Meteorol Soc 102(432):405–418

    Google Scholar 

  • Decharme B, Delire C, Minvielle M, Colin J, Vergnes J-P, Alias A, Saint-Martin D, Séférian R, Sénési S, Voldoire A (2019) Recent changes in the ISBA-CTRIP land surface system for use in the CNRM-CM6 climate model and in global off-line hydrological applications. J Adv Model Earth Syst 11(5):1207–1252

    Google Scholar 

  • Denis B, Cote J, Laprise R (2002a) Spectral decomposition of two-dimensional atmospheric fields on limited-area domains using the discrete cosine transform (DCT). Mon Weather Rev 130(7):1812–1829

    Google Scholar 

  • Denis B, Laprise R, Caya D, Côté J (2002b) Downscaling ability of one-way nested regional climate models: the big-brother experiment. Clim Dyn 18(8):627–646

    Google Scholar 

  • Di Luca A, Argüeso D, Evans JP, de Elía R, Laprise R (2016) Quantifying the overall added value of dynamical downscaling and the contribution from different spatial scales. J Geophys Res Atmos 121(4):1575–1590

    Google Scholar 

  • Doblas-Reyes F, Sorensson A, Almazroui M, Dosio A, Gutowski W, Haarsma R, Hamdi R, Hewitson B, Kwon W-T, Lamptey B, et al (2021) Linking global to regional climate change

  • Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9(5):1937–1958

    Google Scholar 

  • Fox-Rabinovitz M, Côté J, Dugas B, Déqué M, McGregor JL (2006) Variable resolution general circulation models: Stretched-grid model intercomparison project (SGMIP). J Geophys Res Atmos 111(D16)

  • García-Díez M, Fernández J, Vautard R (2015) An RCM multi-physics ensemble over Europe: multi-variable evaluation to avoid error compensation. Clim Dyn 45(11):3141–3156

    Google Scholar 

  • Giorgi F, Jones C, Asrar GR et al (2009) Addressing climate information needs at the regional level: the CORDEX framework. World Meteorol Org (WMO) Bull 58(3):175

    Google Scholar 

  • Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modeling revisited

  • Giorgi F, Torma C, Coppola E, Ban N, Schär C, Somot S (2016) Enhanced summer convective rainfall at alpine high elevations in response to climate warming. Nat Geosci 9(8):584–589

    Google Scholar 

  • Gröger M, Dieterich C, Meier H (2021) Is interactive air sea coupling relevant for simulating the future climate of Europe? Clim Dyn 56(1):491–514

    Google Scholar 

  • Guérémy J (2011) A continuous buoyancy based convection scheme: one-and three-dimensional validation. Tellus A Dyn Meteorol Oceanogr 63(4):687–706

    Google Scholar 

  • Gutiérrez Jones RG, Narisma GT, Alves LM, Amjad M, Gorodetskaya IV, Grose M, Klutse NAB, Krakovska S, Li J, Martínez-Castro D, Mearns LO, Mernild SH, Ngo-Duc T, van den Hurk B, Yoon J-H, Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (2021) Atlas. In: Climate change 2021: the physical science basis. contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change

  • Gutiérrez C, Somot S, Nabat P, Mallet M, Corre L, Van Meijgaard E, Perpiñán O, Gaertner MÁ (2020) Future evolution of surface solar radiation and photovoltaic potential in Europe: investigating the role of aerosols. Environ Res Lett 15(3):034035

    Google Scholar 

  • Hourdin F, Mauritsen T, Gettelman A, Golaz J-C, Balaji V, Duan Q, Folini D, Ji D, Klocke D, Qian Y et al (2017) The art and science of climate model tuning. Bull Am Meteorol Soc 98(3):589–602

    Google Scholar 

  • Jerez S, Montavez JP, Gomez-Navarro JJ, Lorente-Plazas R, Garcia-Valero JA, Jimenez-Guerrero P (2013) A multi-physics ensemble of regional climate change projections over the Iberian Peninsula. Clim Dyn 41(7):1749–1768

    Google Scholar 

  • Jerez S, López-Romero J, Turco M, Jiménez-Guerrero P, Vautard R, Montávez J (2018) Impact of evolving greenhouse gas forcing on the warming signal in regional climate model experiments. Nat Commun 9(1):1–7

    Google Scholar 

  • Katragkou E, García-Díez M, Vautard R, Sobolowski S, Zanis P, Alexandri G, Cardoso RM, Colette A, Fernandez J, Gobiet A et al (2015) Regional climate HINDCAST simulations within EURO-CORDEX: evaluation of a WRF multi-physics ensemble. Geosci Model Dev 8(3):603–618

    Google Scholar 

  • Laprise R, De Elia R, Caya D, Biner S, Lucas-Picher P, Diaconescu E, Leduc M, Alexandru A, Separovic L (2008) Challenging some tenets of regional climate modelling. Meteorol Atmos Phys 100(1):3–22

    Google Scholar 

  • Lavin-Gullon A, Fernandez J, Bastin S, Cardoso RM, Fita L, Giannaros TM, Goergen K, Gutiérrez JM, Kartsios S, Katragkou E et al (2021) Internal variability versus multi-physics uncertainty in a regional climate model. Int J Climatol 41:E656–E671

    Google Scholar 

  • Li D, Shine K, Gray L (1995) The role of ozone-induced diabatic heating anomalies in the quasi-biennial oscillation. Q J R Meteorol Soc 121(524):937–943

    Google Scholar 

  • Lucas-Picher P, Caya D, Biner S, Laprise R (2008) Quantification of the lateral boundary forcing of a regional climate model using an aging tracer. Mon Weather Rev 136(12):4980–4996

    Google Scholar 

  • Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis M et al (2021) Climate change 2021: the physical science basis. In: Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, p 2

  • Mélia DS (2002) A global coupled sea ice-ocean model. Ocean Model 4(2):137–172

    Google Scholar 

  • Miguez-Macho G, Stenchikov GL, Robock A (2004) Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J Geophys Res Atmos 109(D13)

  • Nabat P, Somot S, Cassou C, Mallet M, Michou M, Bouniol D, Decharme B, Drugé T, Roehrig R, Saint-Martin D (2020) Modulation of radiative aerosols effects by atmospheric circulation over the Euro-Mediterranean region. Atmos Chem Phys 20(14):8315–8349

    Google Scholar 

  • Rinke A, Dethloff K (2000) The influence of initial and boundary conditions on the climate of the arctic in a regional climate model. Clim Res 14:101–113

    Google Scholar 

  • Roehrig R, Beau I, Saint-Martin D, Alias A, Decharme B, Guérémy J-F, Voldoire A, Abdel-Lathif AY, Bazile E, Belamari S et al (2020) The CNRM global atmosphere model ARPEGE-CLIMAT 6.3: description and evaluation. J Adv Model Earth Syst 12(7):e2020MS002075

    Google Scholar 

  • Rummukainen M (2016) Added value in regional climate modeling. Wiley Interdiscip Rev Clim Change 7(1):145–159

    Google Scholar 

  • Sanchez-Gomez E, Somot S (2018) Impact of the internal variability on the cyclone tracks simulated by a regional climate model over the med-cordex domain. Clim Dyn 51(3):1005–1021

    Google Scholar 

  • Sanchez-Gomez E, Somot S, Déqué M (2009) Ability of an ensemble of regional climate models to reproduce weather regimes over europe-atlantic during the period 1961–2000. Clim Dyn 33(5):723–736

    Google Scholar 

  • Schulzweida U (2021) CDO user guide

  • Schwingshackl C, Davin EL, Hirschi M, Sørland SL, Wartenburger R, Seneviratne SI (2019) Regional climate model projections underestimate future warming due to missing plant physiological CO2 response. Environ Res Lett 14(11):114019

    Google Scholar 

  • Séférian R, Nabat P, Michou M, Saint-Martin D, Voldoire A, Colin J, Decharme B, Delire C, Berthet S, Chevallier M et al (2019) Evaluation of CNRM earth system model, CNRM-ESM2-1: role of earth system processes in present-day and future climate. J Adv Model Earth Syst 11(12):4182–4227

    Google Scholar 

  • Sieck K, Jacob D et al (2016) Influence of the boundary forcing on the internal variability of a regional climate model. Am J Clim Change 5(03):373

    Google Scholar 

  • Sørland SL, Schär C, Lüthi D, Kjellström E (2018) Bias patterns and climate change signals in GCM-RCM model chains. Environ Res Lett 13(7):074017

    Google Scholar 

  • Staniforth A (1997) Regional modeling: a theoretical discussion. Meteorol Atmos Phys 63(1):15–29

    Google Scholar 

  • Szopa S, Balkanski Y, Schulz M, Bekki S, Cugnet D, Fortems-Cheiney A, Turquety S, Cozic A, Déandreis C, Hauglustaine D et al (2013) Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100. Clim Dyn 40(9):2223–2250

    Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Google Scholar 

  • Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F et al (2011) The representative concentration pathways: an overview. Clim Change 109(1):5–31

    Google Scholar 

  • Vautard R, Kadygrov N, Iles C, Boberg F, Buonomo E, Bülow K, Coppola E, Corre L, van Meijgaard E, Nogherotto R et al (2021) Evaluation of the large EURO-CORDEX regional climate model ensemble. J Geophys Res Atmos 126(17):e2019JD032344

    Google Scholar 

  • Voldoire A, Sanchez-Gomez E, Salas y, Mélia D, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M (2013) The CNRM-CM5. 1 global climate model: description and basic evaluation. Clim Dyn 40(9):2091–2121

    Google Scholar 

  • von Storch H, Langenberg H, Feser F (2000) A spectral nudging technique for dynamical downscaling purposes. Mon Weather Rev 128(10):3664–3673

    Google Scholar 

  • Wilks D (2006) On field significance and the false discovery rate. J Appl Meteorol Climatol 45(9):1181–1189

    Google Scholar 

  • Wilks D (2016) the stippling shows statistically significant grid points: how research results are routinely overstated and overinterpreted, and what to do about it. Bull Am Meteorol Soc 97(12):2263–2273

    Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Dr. Bertrand Denis and Prof. Dr. René Laprise for their feedback on the implementation of 2D-DCT (Discrete Cosine Transform) technique, as well as the development of Big-Brother/Little-Brother experiment which served as inspiration in our work. We would like to thank Dr. Erasmo Buonomo for the fruitful discussion on the assessment of large-scale dynamical consistency of a GCM/RCM pair. We would like to also thank many of our colleagues at the Centre National de Recherches Météorologiques with whom we had numerous exchanges about this research project, and particularly Dr. Bertrand Decharme, Dr. Roland Séférian, Dr. Aurélien Ribes and Dr. Jean-François Guérémy. Finally, we are thankful to the EURO-CORDEX modellers for making the runs available.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

IST wrote the main manuscript text, participated in the process of conceptualization and methodology design, did an important part of the formal analysis and visualization. SS designed and supervised the project. Antoinette Alias participated in the process of design, running and validation of the experiments. JB did the analysis of the EURO-CORDEX ensemble data. Christine Delire contributed to the design and validation of the experiment on the plant physiology effect. All authors actively followed the project with regular exchanges, reviewed the manuscript and provided critical feedback.

Corresponding author

Correspondence to Ioan Sabin Taranu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 2672 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taranu, I.S., Somot, S., Alias, A. et al. Mechanisms behind large-scale inconsistencies between regional and global climate model-based projections over Europe. Clim Dyn 60, 3813–3838 (2023). https://doi.org/10.1007/s00382-022-06540-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06540-6

Keywords

Navigation