Skip to main content

Advertisement

Log in

Identification of large-scale meteorological patterns associated with extreme precipitation in the US northeast

Climate Dynamics Aims and scope Submit manuscript

Abstract

Patterns of daily large-scale circulation associated with Northeast US extreme precipitation are identified using both k-means clustering (KMC) and Self-Organizing Maps (SOM) applied to tropopause height. The tropopause height provides a compact representation of the upper-tropospheric potential vorticity, which is closely related to the overall evolution and intensity of weather systems. Extreme precipitation is defined as the top 1% of daily wet-day observations at 35 Northeast stations, 1979–2008. KMC is applied on extreme precipitation days only, while the SOM algorithm is applied to all days in order to place the extreme results into the overall context of patterns for all days. Six tropopause patterns are identified through KMC for extreme day precipitation: a summertime tropopause ridge, a summertime shallow trough/ridge, a summertime shallow eastern US trough, a deeper wintertime eastern US trough, and two versions of a deep cold-weather trough located across the east-central US. Thirty SOM patterns for all days are identified. Results for all days show that 6 SOM patterns account for almost half of the extreme days, although extreme precipitation occurs in all SOM patterns. The same SOM patterns associated with extreme precipitation also routinely produce non-extreme precipitation; however, on extreme precipitation days the troughs, on average, are deeper and the downstream ridges more pronounced. Analysis of other fields associated with the large-scale patterns show various degrees of anomalously strong moisture transport preceding, and upward motion during, extreme precipitation events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Agel L, Barlow M, Qian J-H, Colby F, Douglas E, Eichler T (2015) Climatology of daily precipitation and extreme precipitation events in the northeast United States. J Hydrometeorol 16:2537–2557. doi:10.1175/JHM-D-14-0147.1

    Article  Google Scholar 

  • Barlow M (2011) Influence of hurricane-related activity on North American extreme precipitation. Geophys Res Lett 38:L04705. doi:10.1029/2010gl046258

    Article  Google Scholar 

  • Bosart LF (1999) Observed cyclone life cycles. In: Shapiro MA, Grønås S (eds) The Life cycles of extratropical cyclones. American Meteorological Society, Boston, pp 187–213. doi:10.1007/978-1-935704-09-6_15

    Google Scholar 

  • Cassano JJ, Uotila P, Lynch AH, Cassano EN (2007) Predicted changes in synoptic forcing of net precipitation in large Arctic river basins during the 21st century. J Geophys Res Biogeos 112:G04549. doi:10.1029/2006JG000332

    Article  Google Scholar 

  • Cassano EN, Glisan JM, Cassano JJ, Gutowski WJ, Jr., Seefeldt MW (2015) Self-organizing map analysis of widespread temperature extremes in Alaska and Canada. Clim Res 62:199–218

    Article  Google Scholar 

  • Catto JL, Pfahl S (2013) The importance of fronts for extreme precipitation. J Geophys Res Atmos 118:10791–10801. doi:10.1002/jgrd.50852

    Article  Google Scholar 

  • Cavazos T (1999) Large-scale circulation anomalies conducive to extreme precipitation events and derivation of daily rainfall in northeastern Mexico and Southeastern Texas. J Clim 12:1506–1523

    Article  Google Scholar 

  • Chen M, Xie P, Co-authors (2008) CPC unified gauge-based analysis of global daily precipitation, Western Pacific Geophysics Meeting, Cairns, Australia, 29 July–1 August, 2008. From NOAA/OAR/ESRL PSD, Boulder, Colorado, USA. http://www.esrl.noaa.gov/psd

  • Collow ABM, Bosilovich MG, Koster RD (2016) Large-scale influences on summertime extreme precipitation in the northeastern United States. J Hydrometeorol 17:3045–3061. doi:10.1175/jhm-d-16-0091.1

    Article  Google Scholar 

  • Davis CA, Emanuel KA (1991) Potential vorticity diagnostics of cyclogenesis. Mon Weather Rev 119:1929–1953. doi:10.1175/1520-0493

    Article  Google Scholar 

  • Diday E, Simon JC (1976) Clustering analysis. In: Fu KS (ed) Digital pattern recognition. Springer, Berlin, pp 47–94. doi:10.1007/978-3-642-96303-2_3

    Google Scholar 

  • Douglas EM, Fairbank CA (2011) Is precipitation in northern New England becoming more extreme? Statistical analysis of extreme rainfall in massachusetts, new hampshire, and maine and updated estimates of the 100-Year Storm. J Hydrol Eng 16:203–217. doi:10.1061/(asce)he.1943-5584.0000303

    Article  Google Scholar 

  • Favre A, Gershunov A (2009) North Pacific cyclonic and anticyclonic transients in a global warming context: possible consequences for Western North American daily precipitation and temperature extremes. Clim Dyn 32:969–987. doi:10.1007/s00382-008-0417-3

    Article  Google Scholar 

  • Feldstein SB, Lee S (2014) Intraseasonal and interdecadal jet shifts in the northern hemisphere: the role of warm pool tropical convection and sea ice. J Clim 27:6497–6518. doi:10.1175/JCLI-D-14-00057.1

    Article  Google Scholar 

  • Glisan JM, Gutowski WJ (2014a) WRF winter extreme daily precipitation over the North American CORDEX Arctic. J Geophys Res Atm 119:10, 738–710, 748. doi:10.1002/2014JD021676

    Google Scholar 

  • Glisan JM, Gutowski WJ (2014b) WRF summer extreme daily precipitation over the CORDEX Arctic. J Geophys Res Atm 119:1720–1732. doi:10.1002/2013JD020697

    Article  Google Scholar 

  • Glisan JM, Gutowski WJ, Cassano JJ, Cassano EN, Seefeldt MW (2016) Analysis of WRF extreme daily precipitation over Alaska using self-organizing maps. J Geophys Res Atmo 121:7746–7761. doi:10.1002/2016JD024822

    Article  Google Scholar 

  • Griffiths ML, Bradley RS (2007) Variations of twentieth-century temperature and precipitation extreme indicators in the northeast United States. J Clim 20:5401–5417

    Article  Google Scholar 

  • Groisman PY, Knight RW, Zolina OG (2013) Recent trends in regional and global intense precipitation patterns. In: Sr. RP, Hossain F (eds) Climate vulnerability: understanding and addressing threats to essential resources. Volume 5, vulerability of water resources to climate. Elsevier Publishing House, Amsterdam, pp 25–55

  • Grotjahn R et al (2016) North American extreme temperature events and related large scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends. Clim Dyn 46:1151–1184. doi:10.1007/s00382-015-2638-6

    Article  Google Scholar 

  • Gutowski WJ, Otieno FO, Arritt RW, Takle ES, Pan Z (2004) Diagnosis and attribution of a seasonal precipitation deficit in a U.S. regional climate simulation. J Hydrometeorol 5:230–242. doi:10.1175/1525-7541(2004)005<0230:DAAOAS>2.0.CO;2

    Article  Google Scholar 

  • Gutowski WJ, Willis SS, Patton JC, Schwedler BRJ, Arritt RW, Takle ES (2008) Changes in extreme, cold-season synoptic precipitation events under global warming. Geophys Res Lett 35:L20710. doi:10.1029/2008GL035516

    Article  Google Scholar 

  • Hawcroft MK, Shaffrey LC, Hodges KI, Dacre HF (2012) How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys Res Lett 39:L24809. doi:10.1029/2012gl053866

    Article  Google Scholar 

  • Hewitson BC, Crane RG (2002) Self-organizing maps: applications to synoptic climatology. Clim Res 22:13–26

    Article  Google Scholar 

  • Higgins RW, Kousky VE, Xie P (2011) Extreme precipitation events in the south-central United States during May and June 2010: historical perspective, role of ENSO, and trends. J Hydrometeorol 12:1056–1070. doi:10.1175/jhm-d-10-05039.1

    Article  Google Scholar 

  • Hoskins BJ, McIntyre ME, Robertson AW (1985) On the use and significance of isentropic potential vorticity maps. Q J R Meteorol Soc 111:877–946. doi:10.1002/qj.49711147002

    Article  Google Scholar 

  • Jones C, Waliser DE, Lau KM, Stern W (2004) Global occurrences of extreme precipitation and the Madden–Julian oscillation: observations and predictability. J Clim 17:4575–4589

    Article  Google Scholar 

  • Kohonen T (2001) Self-organizing maps. Springer, New York

  • Kunkel KE, Easterling DR, Kristovich DAR, Gleason B, Stoecker L, Smith R (2012) Meteorological causes of the secular variations in observed extreme precipitation events for the Conterminous United States. J Hydrometeorol 13:1131–1141. doi:10.1175/jhm-d-11-0108.1

    Article  Google Scholar 

  • Kunkel K et al (2013) Regional Climate Trends and Scenarios for the U.S. National Climate Assessment. Part 1. Climate of the Northeast U.S.

  • Landsea CW, Franklin JL (2013) Atlantic hurricane database uncertainty and presentation of a new database format. Mon Weather Rev 141:3576–3592. doi:10.1175/MWR-D-12-00254.1

    Article  Google Scholar 

  • Martius O, Schwierz C, Davies HC (2010) Tropopause-Level waveguides. J Atmos Sci 67:866–879. doi:10.1175/2009JAS2995.1

    Article  Google Scholar 

  • Melillo JM, Richmond TC, Yohe GW (2014) Climate change impacts in the United States: the third national climate. Assessment. doi:10.7930/J0Z31WJ2

    Google Scholar 

  • Michelangeli P-A, Vautard R, Legras B (1995) Weather regimes: recurrence and quasi stationarity. J Atmos Sci 52:1237–1256. doi:10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2

    Article  Google Scholar 

  • Milrad SM, Atallah EH, Gyakum JR (2010) Synoptic typing of extreme cool-season precipitation events at St. John’s, Newfoundland, 1979–2005. Weather Forecast 25:562–586

    Article  Google Scholar 

  • Milrad SM, Atallah EH, Gyakum JR, Dookhie G (2014) Synoptic typing and precursors of heavy warm-season precipitation events at Montreal, Québec. Weather Forecast 29:419–444 doi:10.1175/WAF-D-13-00030.1

    Article  Google Scholar 

  • Morgan MC, Nielsen-Gammon JW (1998) Using tropopause maps to diagnose midlatitude weather systems. Mon Weather Rev 126:2555–2579. doi:10.1175/1520-0493(1998)126<2555:UTMTDM>2.0.CO;2

    Article  Google Scholar 

  • Nielsen-Gammon JW (2001) A visualization of the global dynamic tropopause. Bull Am Meteorol Soc 82:1151–1167. doi:10.1175/1520-0477(2001)082<1151:AVOTGD>2.3.CO;2

    Article  Google Scholar 

  • Peterson TC et al (2013) Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: state of knowledge. Bull Am Meteorol Soc 94:821–834. doi:10.1175/BAMS-D-12-00066.1

    Article  Google Scholar 

  • Pfahl S, Wernli H (2012) Quantifying the relevance of cyclones for precipitation extremes. J Climate 25:6770–6780. doi:10.1175/jcli-d-11-00705.1

    Article  Google Scholar 

  • Pfahl S, Madonna E, Boettcher M, Joos H, Wernli H (2014) Warm Conveyor belts in the ERA-interim dataset (1979–2010). Part II: moisture origin and relevance for precipitation. J Climate 27:27–40. doi:10.1175/JCLI-D-13-00223.1

    Article  Google Scholar 

  • Riddle EE, Stoner MB, Johnson NC, L’Heureux ML, Collins DC, Feldstein SB (2013) The impact of the MJO on clusters of wintertime circulation anomalies over the North American region. Clim Dyn 40:1749–1766. doi:10.1007/s00382-012-1493-y

    Article  Google Scholar 

  • Rienecker MM et al (2011) MERRA: NASA’s Modern-Era retrospective analysis for research and applications. J Clim 24:3624–3648. doi:10.1175/jcli-d-11-00015.1

    Article  Google Scholar 

  • Roller CD, Qian J-H, Agel L, Barlow M, Moron V (2016) Winter weather regimes in the northeast United States. J Clim 29:2963–2980. doi:10.1175/JCLI-D-15-0274.1

    Article  Google Scholar 

  • Sammon JW (1969) A nonlinear mapping for data structure analysis. IEEE Trans Comput C-18:401–409. doi:10.1109/T-C.1969.222678

    Article  Google Scholar 

  • Santos JA, Corte-Real J, Ulbrich U, Palutikof J (2007) European winter precipitation extremes and large-scale circulation: a coupled model and its scenarios. Theor Appl Climatol 87:85–102

    Article  Google Scholar 

  • Schumacher RS, Johnson RH (2005) Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon Weather Rev 133:961–976. doi:10.1175/MWR2899.1

    Article  Google Scholar 

  • Schumann MR, Roebber PJ (2010) The influence of upper-tropospheric potential vorticity on convective morphology. Mon Weather Rev 138:463–474. doi:10.1175/2009MWR3091.1

    Article  Google Scholar 

  • Wheeler MC, Hendon HH (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932. doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2

    Article  Google Scholar 

  • Williams CN, Vose RS, Easterling DR, Menne MJ (2004) United States historical climatology network daily temperature, precipitation, and snow data. ORNL/CDIAC-118, NDP-070. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee. http://cdiac.ornl.gov/ftp/ushcn_daily

Download references

Funding

Funding provided by National Science Foundation (NSF Project #1623912).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie Agel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (CSV 168 KB)

Supplementary material 2 (PDF 1501 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agel, L., Barlow, M., Feldstein, S.B. et al. Identification of large-scale meteorological patterns associated with extreme precipitation in the US northeast. Clim Dyn 50, 1819–1839 (2018). https://doi.org/10.1007/s00382-017-3724-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3724-8

Keywords

Navigation