Skip to main content

Advertisement

Log in

A process-based analysis of ocean heat uptake in an AOGCM with an eddy-permitting ocean component

Climate Dynamics Aims and scope Submit manuscript

Abstract

About 90 % of the anthropogenic increase in heat stored in the climate system is found in the oceans. Therefore it is relevant to understand the details of ocean heat uptake. Here we present a detailed, process-based analysis of ocean heat uptake (OHU) processes in HiGEM1.2, an atmosphere–ocean general circulation model with an eddy-permitting ocean component of 1/3° resolution. Similarly to various other models, HiGEM1.2 shows that the global heat budget is dominated by a downward advection of heat compensated by upward isopycnal diffusion. Only in the upper tropical ocean do we find the classical balance between downward diapycnal diffusion and upward advection of heat. The upward isopycnal diffusion of heat is located mostly in the Southern Ocean, which thus dominates the global heat budget. We compare the responses to a 4xCO2 forcing and an enhancement of the windstress forcing in the Southern Ocean. This highlights the importance of regional processes for the global ocean heat uptake. These are mainly surface fluxes and convection in the high latitudes, and advection in the Southern Ocean mid-latitudes. Changes in diffusion are less important. In line with the CMIP5 models, HiGEM1.2 shows a band of strong OHU in the mid-latitude Southern Ocean in the 4xCO2 run, which is mostly advective. By contrast, in the high-latitude Southern Ocean regions it is the suppression of convection that leads to OHU. In the enhanced windstress run, convection is strengthened at high Southern latitudes, leading to heat loss, while the magnitude of the OHU in the Southern mid-latitudes is very similar to the 4xCO2 results. Remarkably, there is only very small global OHU in the enhanced windstress run. The wind stress forcing just leads to a redistribution of heat. We relate the ocean changes at high Southern latitudes to the effect of climate change on the Antarctic Circumpolar Current (ACC). It weakens in the 4xCO2 run and strengthens in the wind stress run. The weakening is due to a narrowing of the ACC, caused by an expansion of the Weddell Gyre, and a flattening of the isopycnals, which are explained by a combination of the wind stress forcing and increased precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  • Banks HT, Gregory JM (2006) Mechanisms of ocean heat uptake in a coupled climate model and the implications for tracer based predictions of ocean heat uptake. Geophys Res Lett 33:L07608. doi:10.1029/2005GL025352

    Google Scholar 

  • Bouttes N, Gregory J, Kuhlbrodt T, Suzuki T (2012) The effect of windstress change on future sea level change in the Southern Ocean. Geophys Res Lett 39(23). doi:10.1029/2012GL054207

    Google Scholar 

  • Brierley CM, Collins M, Thorpe AJ (2010) The impact of perturbations to ocean-model parameters on climate and climate change in a coupled model. Clim Dyn 34:325–343. doi:10.1007/s00382-008-0486-3

    Article  Google Scholar 

  • Cai W, Cowan T, Godfrey S, Wijffels S (2010) Simulations of processes associated with the fast warming rate of the southern midlatitude ocean. J Clim 23:197–206. doi:10.1175/2009JCLI3081.1

    Article  Google Scholar 

  • Church JA, White NJ, Konikow LF, Domingues CM, Cogley JG, Rignot E, Gregory JM, van den Broeke MR, Monaghan AJ, Velicogna I (2011) Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys Res Lett 38:L18601. doi:10.1029/2011GL048794

    Google Scholar 

  • Downes S, Hogg A (2013) Southern Ocean circulation and eddy compensation in CMIP5 models. J Clim 26:7198–7220. doi:10.1175/JCLI-D-12-00504.1

    Article  Google Scholar 

  • Dufresne JL, Bony S (2008) An assessment of the primary sources of spread of global warming estimates from coupled atmosphere–ocean models. J Clim 21(19):5135–5144. doi:10.1175/2008JCLI2239.1

    Article  Google Scholar 

  • Eden C, Greatbatch RJ (2009) A diagnosis of isopycnal mixing by mesoscale eddies. Ocean Model 27:98–106. doi:10.1016/j.ocemod.2008.12.002

    Article  Google Scholar 

  • Exarchou E, Kuhlbrodt T, Gregory JM, Smith RS (2015) Ocean heat uptake processes: a model intercomparison. J Clim 28(2):887–908. doi:10.1175/JCLI-D-14-00235.1

    Article  Google Scholar 

  • Farneti R, Delworth TL, Rosati AJ, Griffies SM, Zeng F (2010) The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J Phys Oceanogr 40:1539–1557. doi:10.1175/2010JPO4353.1

    Article  Google Scholar 

  • Frankcombe LM, Spence P, Hogg AM, England MH, Griffies SM (2013) Sea level changes forced by Southern Ocean winds. Geophys Res Lett 40:1–6. doi:10.1002/2013GL058104

    Article  Google Scholar 

  • Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155

    Article  Google Scholar 

  • Gnanadesikan A, Slater R, Swathi PS, Vallis GK (2005) The energetics of ocean heat transport. J Clim 18:2604–2616

    Article  Google Scholar 

  • Good P, Gregory JM, Lowe JA (2011) A step-response simple climate model to reconstruct and interpret AOGCM projections. Geophys Res Lett 38:L01703. doi:10.1029/2010GL045208

    Google Scholar 

  • Good P, Ingram W, Lambert FH, Lowe JA, Gregory JM, Webb MJ, Ringer MA, Wu P (2012) A step-response approach for predicting and understanding non-linear precipitation changes. Clim Dyn 39:2789–2803. doi:10.1007/s00382-012-1571-1

    Article  Google Scholar 

  • Graham RM, de Boer AM, Heywood KJ, Chapman MR, Stevens DP (2012) Southern Ocean fronts: controlled by wind or topography? J Geophys Res 117:C08018. doi:10.1029/2012JC007887

    Google Scholar 

  • Gregory JM (2000) Vertical heat transports in the ocean and their effect on time-dependent climate change. Clim Dyn 16(7):501–515. doi:10.1007/s003820000059

    Article  Google Scholar 

  • Gregory JM, Forster PM (2008) Transient climate response estimated from radiative forcing and observed temperature change. J Geophys Res 113:D23105. doi:10.1029/2008JD014050

    Article  Google Scholar 

  • Griffies SM, Gnanadesikan A, Pacanowski RC, Larichev VD, Dukowicz JK, Smith RD (1998) Isoneutral diffusion in a z-coordinate ocean model. J Phys Oceanogr 28:805–830

    Article  Google Scholar 

  • Griffies SM, Winton M, Anderson WG, Benson R, Delworth TL, Dufour CO, Dunne JP, Goddard P, Morrison AK, Rosati A, Wittenberg AT, Yin J, Zhang R (2015) Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J Clim 28(3):952–977. doi:10.1175/JCLI-D-14-00353.1

    Article  Google Scholar 

  • Heuzé C, Heywood KJ, Stevens DP, Ridley JK (2013) Southern Ocean bottom water characteristics in CMIP5 models. Geophys Res Lett 40:1–6. doi:10.1002/grl.50287

    Article  Google Scholar 

  • Hieronymus M, Nycander J (2013) The budgdets of heat and salinity in NEMO. Ocean Model. 67:28–38. doi:10.1016/j.ocemod.2013.03.006

    Article  Google Scholar 

  • Huang B, Stone PH, Sokolov AP, Kamenkovich IV (2003a) The deep-ocean heat uptake in transient climate change. J Clim 16:1352–1363

    Article  Google Scholar 

  • Huang B, Stone PH, Sokolov AP, Kamenkovich IV (2003b) Ocean heat uptake in transient climate change: mechanisms and uncertainty due to subgrid-scale eddy mixing. J Clim 16:3344–3356

    Article  Google Scholar 

  • Kirkman CH IV, Bitz CM (2011) The effect of the sea ice freshwater flux on Southern Ocean temperatures in CCSM3: deep-ocean warming and delayed surface warming. J Clim 24:2224–2237. doi:10.1175/2010JCLI3625.1

    Article  Google Scholar 

  • Kuhlbrodt T, Gregory JM (2012) Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys Res Lett 39:L18608. doi:10.1029/2012GL052952

    Google Scholar 

  • Large W, McWilliams J, Doney S (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32(4):363–403. doi:10.1029/94RG01872

    Article  Google Scholar 

  • Lee MM, Nurser AJG, Coward AC, de Cuevas BA (2007) Eddy advective and diffusive transports of heat and salt in the Southern Ocean. J Phys Oceanogr 37:1376–1393. doi:10.1175/JPO3057.1

    Article  Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baronova OK, Zweng MM, Johnson DR (2006) World Ocean Atlas 2009, vol 1. U.S. Government Printing Office, Washington, DC, USA, NOAA Atlas NESDIS 68, p 184

  • Manabe S, Bryan K, Spelman M (1990) Transient response of a global ocean-atmosphere model to a doubling of atmospheric carbon dioxide. J Phys Oceanogr 20:722–749

    Article  Google Scholar 

  • Marshall J, Radko T (2003) Residual-mean solution for the Antarctic Circumpolar Current and its associated overturning circulation. J Phys Oceanogr 33:2341–2354

    Article  Google Scholar 

  • Mazloff M, Heimbach P, Wunsch C (2010) An eddy-permitting Southern Ocean state estimate. J Phys Oceanogr 40:880–899

    Article  Google Scholar 

  • Megann A, Storkey D, Aksenov Y, Alderson S, Calvert D, Graham T, Hyder P, Siddorn J, Sinha B (2014) GO5.0: the joint NERC—Met Office NEMO global ocean model for use in coupled and forced applications. Geosci Model Dev 7:1069–1092. doi:10.5194/gmd-7-1069-2014

    Article  Google Scholar 

  • Meijers A, Shuckburgh E, Bruneau N, Sallee JB, Bracegirdle T, Wang Z (2012) Representation of the Antarctic Circumpolar Current in the CMIP5 climate models and future changes under warming scenarios. J Geophys Res 117:C12008. doi:10.1029/2012JC008412

    Article  Google Scholar 

  • Morrison AK, Saenko OA, Hogg AM, Spence P (2013) The role of vertical eddy transport in Southern Ocean heat uptake. Geophys Res Lett 40:5445–5450. doi:10.1002/2013GL057706

    Article  Google Scholar 

  • Munk W, Wunsch C (1998) Abyssal recipes II: energetics of tidal and wind mixing. Deep Sea Res I 45:1977–2010

    Article  Google Scholar 

  • Pardaens AK, Gregory JM, Lowe JA (2011) A model study of factors influencing projected changes in regional sea level over the 21st century. Clim Dyn 36(9–10):2015–2033. doi:10.1007/s00382-009-0738-x

    Article  Google Scholar 

  • Peters H, Gregg MC, Sanford TB (1995) Detail and scaling of turbulent overturns in the Pacific equatorial undercurrent. J Geophys Res 100(C9):18349–18368. doi:10.1029/95JC01360

    Article  Google Scholar 

  • Rahmstorf S (1993) A fast and complete convection scheme for ocean models. Ocean Model 101:9–11

    Google Scholar 

  • Roberts MJ, Marshall D (1998) Do we require adiabatic dissipation schemes in eddy-resolving ocean models? J Phys Oceanogr 28:2050–2063

    Article  Google Scholar 

  • Sen Gupta A, Muir LC, Brown JN, Phipps SJ, Durack PJ, Monselesan D, Wijffels SE (2012) Climate drift in the CMIP3 models. J Clim 25:4621–4640. doi:10.1175/JCLI-D-11-00321.1

    Article  Google Scholar 

  • Shaffrey LC, Stevens I, Norton WA, Roberts MJ, Vidale PL, Harle JD, Jrrar A, Stevens DP, Woodage MJ, Demory ME, Donners J, Clark DB, Clayton A, Cole JW, Wilson SS, Connolley WM, Davies TM, Iwi AM, Johns TC, King JC, New AL, Slingo JM, Slingo A, Steenman-Clark L, Martin GM (2009) U.K. HiGEM: the new U.K. high-resolution global environment model–Model description and basic evaluation. J Clim 22:1861–1896. doi:10.1175/2008JCLI2508.1

    Article  Google Scholar 

  • Sigmond M, Reader MC, Fyfe JC, Gillett NP (2011) Drivers of past and future Southern Ocean change: stratospheric ozone versus greenhouse gas impacts. Geophys Res Lett 38:L12601. doi:10.1029/2011GL047120

    Google Scholar 

  • Wang Z, Kuhlbrodt T, Meredith MP (2011) On the response of the Antarctic Circumpolar Current transport to climate change in coupled climate models. J Geophys Res 116:C08011. doi:10.1029/2010JC006757

    Google Scholar 

  • Wolfe CL, Cessi P, McClean JL, Maltrud ME (2008) Vertical heat transport in eddying ocean models. Geophys Res Lett 35:L23605. doi:10.1029/2008GL036138

    Article  Google Scholar 

  • Yin J (2012) Century to multi-century sea level rise projections from CMIP5 models. Geophys Res Lett 39(17). doi:10.1029/2012GL052947

    Google Scholar 

  • Yin J, Griffies SM, Stouffer RJ (2010) Spatial variability of sea level rise in twenty-first century projections. J Clim 23:4585–4607

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dave Stevens and Ian Stevens for help and support with running HiGEM1.2 and investigating the model code. The comments of Steve Griffies and two anonymous reviewers have led to important clarifications in the paper. The research leading to the results presented here has received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013), ERC grant agreement number 247220, project “Seachange”, and from the National Centre for Atmospheric Science (NCAS) Climate Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kuhlbrodt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuhlbrodt, T., Gregory, J.M. & Shaffrey, L.C. A process-based analysis of ocean heat uptake in an AOGCM with an eddy-permitting ocean component. Clim Dyn 45, 3205–3226 (2015). https://doi.org/10.1007/s00382-015-2534-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2534-0

Keywords

Navigation