Skip to main content

Advertisement

Log in

Sensitivity of transient climate change to tidal mixing: Southern Ocean heat uptake in climate change experiments performed with ECHAM5/MPIOM

Climate Dynamics Aims and scope Submit manuscript

Abstract

We investigate the sensitivity of the transient climate change to a tidal mixing scheme. The scheme parameterizes diapycnal diffusivity depending on the location of energy dissipation over rough topography, whereas the standard configuration uses horizontally constant diffusivity. We perform ensemble climate change experiments with two setups of MPIOM/ECHAM5, one setup with the tidal mixing scheme and the second setup with the standard configuration. Analysis of the responses of the transient climate change to CO2 increase reveals that the implementation of tidal mixing leads to a significant reduction of the transient surface warming by 9 %. The weaker surface warming in the tidal run is localized particularly over the Weddell Sea, likely caused by a stronger ocean heat uptake in the Southern Ocean. The analysis of the ocean heat budget reveals that the ocean heat uptake in both experiments is caused by changes in convection and advection. In the upper ocean, heat uptake is caused by reduced convection and enhancement of the Deacon Cell, which appears also in isopycnal coordinates. In the deeper ocean, heat uptake is caused by reduction of convective cooling associated with the circulation polewards of 65°S. Tidal mixing leads to stronger heat uptake in the Southern Ocean by causing stronger changes in advection, namely a stronger increase in the Deacon Cell and a stronger reduction in advective cooling by the circulation polewards of 65°S. Counter-intuitively, the relation between tidal mixing and greater heat storage in the deep ocean is an indirect one, through the influence of tidal mixing on the circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Geophysical Data Center, 2006. 2-min Gridded Global Relief Data (ETOPO2v2) http://www.ngdc.noaa.gov/mgg/fliers/06mgg01.html.

References

  • Alory G, Wijffels S, Meyers G (2007) Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys Res Lett 34:L02606. doi:10.1029/2006GL028044, http://dx.doi.org/10.1029/2006GL028044

  • Armour KC, Bitz CM, Roe GH (2012) Time-varying climate sensitivity from regional feedbacks. J Clim. doi:10.1175/JCLI-D-12-00544.1

  • Barnett TP, Pierce DW, Schnur R (2001) Detection of anthropogenic climate change in the World’s Oceans. Science 292:270–274

    Article  Google Scholar 

  • Bitz CM, Gent PR, Woodgate RA, Holland MM, Lindsay R (2006) The influence of sea ice on ocean heat uptake in response to increasing CO2. J Clim 19:2437–2450

    Article  Google Scholar 

  • Bryan F (1987) Parameter sensitivity of primitive equation of ocean general circulation models. J Phys Oceanogr 17:970–985

    Article  Google Scholar 

  • Dalan F, Stone PH, Sokolov AP (2004) Sensitivity of the ocean’s climate to diapycnal diffusivity in an EMIC. Part II: global warming scenario. J Clim 18:2482–2496

    Article  Google Scholar 

  • Danabasoglu G, McWilliams JC (1995) Sensitivity of the global ocean circulation to parameterizations of mesoscale tracer transports. J Clim 25:2967–2987

    Article  Google Scholar 

  • Döös K, Webb DJ (1994) The Deacon cell and other meridional cells in the Southern Ocean. J Phys Oceanogr 24:429–442

    Article  Google Scholar 

  • Egbert GD, Ray RD (2003) Semi-diurnal tidal dissipation from TOPEX/Poseidon altimetry. Geophys Res Lett 30:1907. doi:10.1029/2003GL017676, http://dx.doi.org/10.1029/2003GL017676

  • Exarchou E, Von Storch J-S, Jungclaus J (2012) Impact of tidal mixing with different scales of bottom roughness on the general circulation in the ocean model MPIOM. Ocean Dyn 62:1545–1563. doi:10.1007/s10236-012-0573-1

    Article  Google Scholar 

  • Farneti R, Delworth TL, Rosati AJ, Griffies SM, Zeng F (2010) The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J Phys Oceanogr 40:1539–1557

    Article  Google Scholar 

  • Folland CK, Karl TR, Salinger JM (2002) Observed climate variablility and change. Weather 57:269–278

    Article  Google Scholar 

  • Fyfe JC, Saenko OA (2006) Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys Res Lett 33:L06701. doi:10.1029/2005GL025332

    Google Scholar 

  • Ganaschaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Lett Nat 408:453–457

    Article  Google Scholar 

  • Gent PR, Danabasoglu G (2011) Response to increasing southern Hemisphere Winds in CCSM4. J Clim 24:4992–4998

    Article  Google Scholar 

  • Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155

    Article  Google Scholar 

  • Gille ST (2008) Decadal-scale temperature trends in the Southern Hemisphere Ocean. J Clim 21:4749–4765. doi:10.1175/2008JCLI2131.1, http://dx.doi.org/10.1175/2008JCLI2131.1

    Google Scholar 

  • Gregory JM (2000) Vertical heat transports in the ocean and their effect on time-dependent climate change. Clim Dyn 16:501–515

    Article  Google Scholar 

  • Gregory JM et al (2004) A new method for diagnosing radiative forcing and climate sensitivity. Geophys Res Lett 31:L03205. doi:10.1029/2003GL018747

    Google Scholar 

  • Griffies SM, Pacanowski RC, Larichev VD, Dukowicz JK, Smith RD et al (1998) Isoneutral diffusion in a z-coordinate ocean model. J Phys Oceanogr 28:805–830

    Article  Google Scholar 

  • Hibler W (1979) Dynamic thermodynamic sea-ice model. J Phys Oceanogr 9:815–846

    Article  Google Scholar 

  • Holland MM, Bitz CM (2003) Polar amplification of climate change in coupled models. Clim Dyn 21:221–232

    Article  Google Scholar 

  • Huang B, Stone PH, Sokolov A, Kamemkovich I (2003) The deep-ocean heat uptake in transient climate change. J Clim 16:1352–1362

    Article  Google Scholar 

  • Jayne SR (2009) The impact of abyssal mixing parameterizations in an ocean general circulation model. J Phys Oceanogr 39:1756–1775

    Article  Google Scholar 

  • Jungclaus JH et al (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Clim 19:3952–3972

    Article  Google Scholar 

  • Jungclaus JH et al (2010) Climate and carbon-cycle variability over the last millennium. Clim Past Discuss 6(3):1009–1044

    Article  Google Scholar 

  • Ledwell JR, Montgomery ET, Polzin KL, Laurent LCS, Schmitt RW, Toole JM (2000) Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature 403:179–182

    Article  Google Scholar 

  • Levitus S, Antonov JI, Boyer TP, Locarnini RA, Garcia HE, Mishonov AV (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys Res Lett 36:L07608. doi:10.1029/2008GL037155, http://dx.doi.org/10.1029/2008GL037155

  • Levitus S, Antonov JI, Wang J, Delworth TL, Dixon KW, Broccoli AJ (2001) Anthropogenic warming of earth’s climate system. Science 292:267–270

    Article  Google Scholar 

  • Li C, von Storch J-S, Marotzke J (2012) Deep-ocean heat uptake and equilibrium climate response. Clim Dyn 40:1071–1086

    Google Scholar 

  • Manabe S, Bryan K, Spelman MJ (1990) Transient responses of a coupled ocean–atmosphere model to a doubling of atmospheric carbon dioxide. J Phys Oceanogr 20:722–749

    Article  Google Scholar 

  • Manabe S, Stouffer RJ (1980) Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J Geophys Res 85:5529–5554

    Article  Google Scholar 

  • Marshall J, Radko T (2003) Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J Phys Oceanogr 33:2341–2354

    Article  Google Scholar 

  • Marsland SJ, Church JA, Bindoff NL, Williams GD (2007) Antarctic coastal polynya response to climate change. J Geophys Res Oceans 112:C07009. doi:10.1029/2005JC003291, http://dx.doi.org/10.1029/2005JC003291

  • Marsland SJ, Haak H, Jungclaus JH, Latif M, Röske F (2003) The Max Planck Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5:91–127

    Article  Google Scholar 

  • Mikolajewitcz U, Voss R (2000) The role of the individual air-sea flux components in co2-induced changes of the ocean’s circulation and climate. Clim Dyn 16:627–642

    Article  Google Scholar 

  • Montenegro A, Eby M, Weaver AJ, Jayne SR (2007) Response of a climate model to tidal mixing parameterization under present day and last glacial maximum conditions. Ocean Model 19:125–137

    Article  Google Scholar 

  • Muller CJ, Bühler O (2009) Saturation of the internal tides and induced mixing in the abyssal ocean. J Phys Oceanogr 39:2077–2096

    Article  Google Scholar 

  • Munk W, Wunsch C (1998) Abyssal recipies II: energetics of tidal and wind mixing. Deep Res I 45:1977–2010

    Article  Google Scholar 

  • Pacanowski RC, Philander SGH (1981) Parameterization of vertical mixing in numerical models of tropical oceans. J Phys Oceanogr 11:1443–1451

    Article  Google Scholar 

  • Pierce DW, Barnett T, AchutaRao KM, Gleckler PJ, Gregory JM, Washington WM (2006) Anthropogenic warming of the oceans: observations and model results. J Clim 19:1873–1900. doi:10.1175/JCLI3723.1, http://dx.doi.org/10.1175/JCLI3723.1

    Google Scholar 

  • Polzin K, Toole JM, Ledwell JR, Schmitt RW (1997) Spatial variability of turbulent mixing in the abyssal ocean. Science 276:93–96

    Article  Google Scholar 

  • Roeckner E et al (2003) The Atmospheric General Circulation Model ECHAM5, Part I. Tech. rep., Max Planck Institute for Meteorology, Bundesstrasse 53, D-20146, Hamburg

  • Saenko O, Merryfield W (2004) On the effect of the topographically enhanced mixing on the global ocean circulation. J Phys Oceanogr 35:826–834

    Article  Google Scholar 

  • Saenko OA (2006) The effect of localized mixing on the ocean circulation and time-dependent climate change. J Phys Oceanogr 36:140–160

    Article  Google Scholar 

  • Saenko OA, Fyfe JC, England MH (2005) On the response of the oceanic wind-driven circulation to CO2 increase. Clim Dyn 25:415–426

    Article  Google Scholar 

  • Saenko OA, Zhai X, Merryfield WJ, Lee WG (2012) The combibed effect of tidally and eddy driven diapycnal mixing on the large-scale circulation. J Phys Oceanogr 42:526–538

    Article  Google Scholar 

  • Scott JR, Marotzke J (2002) The location of diapycnal mixing and the meridional overturning circulation. J Phys Oceanogr 32:3578–3595

    Article  Google Scholar 

  • Semtner AJ (1976) Model for thermodynamic growth of sea-ice in numerical investigations of climate. J Phys Oceanogr 6:379–389

    Article  Google Scholar 

  • Sen Gupta A, Santoso A, Taschetto AS, Ummenhofer CC, Trevena J, England MH (2009) Projected changes to the Southern Hemisphere ocean and sea ice in the IPCC AR4 climate models. J Clim 22:3047–3078. doi:10.1175/2008JCLI2827.1, http://dx.doi.org/10.1175/2008JCLI2827.1

    Google Scholar 

  • Senior CA, Mitchell JFB (2000) The time dependance of climate sensitivity. Geophys Res Lett 27:2685–2688

    Article  Google Scholar 

  • Simmons HL, Jayne SR, Laurent LCS, Weaver AJ (2004) Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Model 6:245–263

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Speer K, Rintoul SR, Sloyan B (2000) The diabatic Deacon cell. J Phys Oceanogr 30:3212–3222

    Article  Google Scholar 

  • Spence P, Fyfe JC, Montenegro A, Weaver AJ (2010) Southern ocean response to strengthening winds in an eddy-permitting global climate model. J Clim 23:5332–5343

    Article  Google Scholar 

  • Spence P, Saenko OA, Eby M, Weaver AJ (2009) The Southern Ocean overturning: parameterized versus permitted eddies. J Phys Oceanogr 39:1634–1651

    Article  Google Scholar 

  • St. Laurent LC, Simmons HL, Jayne SR (2002) Estimating tidally driven mixing in the deep ocean. Geophys Res Lett 29(23):21–1–21–4. doi:10.1029/2002GL015633, http://dx.doi.org/10.1029/2002GL015633

  • Toole JM, Polzin KL, Schmitt W (1994) Estimates of diapycnal mixing in the Abyssal Ocean. Science 264:1120–1123

    Article  Google Scholar 

  • Wolfe CL, Cessi P, McClean JL, Maltrud ME (2008) Vertical heat transport in eddying ocean models. Geophys Res Lett 35:L23605. doi:10.1029/2008GL036138

    Article  Google Scholar 

  • Zahel W, Gavinho J, Seiler U (2000) Balances de energia y momento angular de un modelo global de mareas con asimilacion de datos. GEOS 20(4):400–413

    Google Scholar 

Download references

Acknowledgments

We would like to thank Suvarchal Kumar Cheedela for the constructive discussions. We thank the three anonymous reviewers for their useful comments. The model integration was performed on the Linux-cluster of the German Climate Computing Center (DKRZ) in Hamburg. This work is supported by the Max Planck Society and the International Max Planck Research School on Earth System Modelling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Exarchou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Exarchou, E., von Storch, JS. & Jungclaus, J.H. Sensitivity of transient climate change to tidal mixing: Southern Ocean heat uptake in climate change experiments performed with ECHAM5/MPIOM. Clim Dyn 42, 1755–1773 (2014). https://doi.org/10.1007/s00382-013-1776-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1776-y

Keywords

Navigation