Skip to main content

Advertisement

Log in

Evaluation of the regional climate model ALADIN to simulate the climate over North America in the CORDEX framework

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In this study, an ensemble of four multi-year climate simulations is performed with the regional climate model ALADIN to evaluate its ability to simulate the climate over North America in the CORDEX framework. The simulations differ in their driving fields (ERA-40 or ERA-Interim) and the nudging technique (with or without large-scale nudging). The validation of the simulated 2-m temperature and precipitation with observationally-based gridded data sets shows that ALADIN performs similarly to other regional climate models that are commonly used over North America. Large-scale nudging improves the temporal correlation of the atmospheric circulation between ALADIN and its driving field, and also reduces the warm and dry summer biases in central North America. The differences between the simulations driven with different reanalyses are small and are likely related to the regional climate model’s induced internal variability. In general, the impact of different driving fields on ALADIN is smaller than that of large-scale nudging. The analysis of the multi-year simulations over the prairie and the east taiga indicates that the ALADIN 2-m temperature and precipitation interannual variability is similar or larger than that observed. Finally, a comparison of the simulations with observations for the summer 1993 shows that ALADIN underestimates the flood in central North America mainly due to its systematic dry bias in this region. Overall, the results indicate that ALADIN can produce a valuable contribution to CORDEX over North America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Achberger C, Linderson M-L, Chen D (2003) Performance of the Rossby center regional atmospheric model in southern Sweden: comparison of simulated and observed precipitation. Theor Appl Climatol 76:219–234. doi:10.1007/s00704-003-0015-6

    Article  Google Scholar 

  • Alexandru A, de Elia R, Laprise R, Separovic L, Biner S (2009) Sensitivity study of regional climate model simulations to large-scale nudging parameters. Mon Wea Rev 137:1666–1686. doi:10.1175/2008MWR2620.1

    Article  Google Scholar 

  • Anderson CJ et al (2003) Hydrological processes in regional climate model simulations of the Central United States Flood of June–July 1993. J Hydrometeor 4:584–598. doi:10.1175/1525-7541(2003)004<0584:HPIRCM>2.0.CO;2

    Article  Google Scholar 

  • Anderson CJ, Arritt RW, Kain JS (2007) An alternative mass flux profile in the Kain–Fritsch convective parameterization and its effects in seasonal precipitation. J Hydrometeor 8:1128–1140. doi:10.1175/JHM624.1

    Article  Google Scholar 

  • Biner S, Caya D, Laprise R, Spacek L (2000) Nesting of RCM by imposing large scales. WMO/TD 987(30):7.3–7.4

    Google Scholar 

  • Brands S, Gutiérrez JM, Herrera S, Cofiño AS (2012) On the use of reanalysis data for downscaling. J Climate 25:2517–2526. doi:10.1175/JCLI-D-11-00251.1

    Article  Google Scholar 

  • Bromwich DH, Fogt RL, Hodges KI, Walsh JE (2007) A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions. J Geophys Res 112:D10111. doi:10.1029/2006JD007859

    Article  Google Scholar 

  • Bukovsky MS (2011) Masks for the Bukovsky regionalization of North America, Regional Integrated Sciences Collective, Institute for Mathematics Applied to Geosciences, National Center for Atmospheric Research, Boulder, CO. Downloaded 2012-02-23. http://www.narccap.ucar.edu/contrib/bukovsky/

  • Bukovsky MS (2012) Temperature trends in the NARCCAP regional climate models. J Climate 25:3985–3991. doi:10.1175/JCLI-D-11-00588.1

    Article  Google Scholar 

  • Bukovsky MS, Karoly DJ (2011) A regional modeling study of climate change impacts on warm-season precipitation in the central US. J Clim 24:1985–2002. doi:10.1175/2010JCLI3447.1

    Article  Google Scholar 

  • Castro CL, Pielke RA Sr, Leoncini G (2005) Dynamical downscaling: assessment of value retained and added using the regional atmospheric modeling system (RAMS). J Geophys Res 110:D05108. doi:10.1029/2004JD004721

    Article  Google Scholar 

  • Castro CL, Pielke RA Sr, Adegoke JO (2007) Investigation of the summer climate of the contiguous United States and Mexico using the Regional Atmospheric Modeling System (RAMS). Part I: model climatology (1950–2002). J Climate 20:3844–3865. doi:10.1175/JCLI4211.1

    Article  Google Scholar 

  • Christensen JH, Machenhauer B, Jones RG, Schar C, Ruti PM, Castro M, Visconti G (1997) Validation of present-day regional climate simulations over Europe: LAM simulations with observed boundary conditions. Clim Dyn 13:489–506. doi:10.1007/s003820050178

    Article  Google Scholar 

  • Colin J, Déqué M, Radu R, Somot S (2010) Sensitivity study of heavy precipitation in limited area model climate simulations: influence of the size of the domain and the use of the spectral nudging technique. Tellus 62:591–604. doi:10.1111/j.1600-0870.2010.00467.x

    Google Scholar 

  • de Elia R et al (2008) Evaluation of uncertainties in the CRCM-simulated North American climate. Clim Dyn 30:113–132. doi:10.1007/s00382-007-0288-z

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Déqué M, Somot S (2008) Analysis of heavy precipitation for France using ALADIN RCM simulations. Idojaras Quater J Hung Meteorol Ser 112:179–190

    Google Scholar 

  • Fouquart Y, Bonnel B (1980) Computations of solar heating of the earth’s atmosphere: a new parametrization. Beitr Phys Atmos 53:35–62

    Google Scholar 

  • Fu C et al (2005) Regional climate model intercomparison project for Asia. Bull Am Meteor Soc 86:257–266. doi:10.1175/BAMS-86-2-257

    Article  Google Scholar 

  • Giorgi F, Mearns L, Shields C, Mayer L (1996) A regional model study of the importance of local versus remote controls of the 1988 drought and the 1993 flood over the Central United States. J Climate 9:1150–1162

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183

    Google Scholar 

  • Gutowski WJ, Otieno FO, Arritt RW, Takle ES, Pan Z (2004) Diagnosis and attribution of a seasonal precipitation deficit in a US regional climate simulation. J Hydrometeor 5:230–242. doi:10.1175/1525-7541(2004)005<0230:DAAOAS>2.0.CO;2

    Article  Google Scholar 

  • Herrmann M, Somot S, Calmanti S, Dubois C, Sevault F (2011) Representation of spatial and temporal variability of daily wind speed and of intense wind events over the Mediterranean Sea using dynamical downscaling: impact of the regional climate model configuration. Nat Hazards Earth Syst Sci 11:1983–2001. doi:10.5194/nhess-11-1983-2011

    Article  Google Scholar 

  • Kanamitsu M et al (2002) NCEP/DOE AMIP-II reanalysis (R-2). Bull Am Meteor Soc 83:1631–1643. doi:10.1175/BAMS-83-11-1631(2002)083<1631:NAR>2.3.CO;2

    Article  Google Scholar 

  • Kjellström E, Boberg F, Castro M, Christensen JH, Nikulin G, Sánchez E (2010) Daily and monthly temperature and precipitation statistics as performance indicators for regional climate models. Clim Res 44:135–150. doi:10.3354/cr00932

    Article  Google Scholar 

  • Leduc M, Laprise R (2008) Regional climate model sensitivity to domain size. Clim Dyn 32:833–854. doi:10.1007/s00382-008-0400-z

    Article  Google Scholar 

  • Leung LR, Qian Y, Han J, Roads JO (2003) Intercomparison of global reanalyses and regional simulations of cold season water budgets in the western United States. J Hydrometeor 4:1067–1087. doi:10.1175/1525-7541(2003)004<1067:IOGRAR>2.0.CO;2

    Article  Google Scholar 

  • Liang X-Z, Kunkel KE, Samel AN (2001) Development of a regional climate model for US Midwest applications. Part I: sensitivity to buffer zone treatment. J Climate 14:4363–4378

    Article  Google Scholar 

  • Liang X-Z, Li L, Kunkel KE, Ting M, Wang JXL (2004) Regional climate model simulation of US precipitation during 1982–2002. Part I: annual cycle. J Climate 17:3510–3529. doi:10.1175/1520-0442(2004)017<3510:RCMSOU>2.0.CO;2

    Article  Google Scholar 

  • Lim Y-K, Stefanova LB, Chan SC, Schubert SD, O’Brien JJ (2011) High-resolution subtropical summer precipitation derived from dynamical downscaling of the NCEP/DOE reanalysis: how much small-scale information is added by a regional model? Clim Dyn 37:1061–1080. doi:10.1007/s00382-010-0891-2

    Article  Google Scholar 

  • Lucas-Picher P, Caya D, de Elia R, Laprise R (2008a) Investigation of regional climate models internal variability with a ten-member ensemble of ten-year simulations over a large domain. Clim Dyn 31:927–940. doi:10.1007/s00382-008-0384-8

    Article  Google Scholar 

  • Lucas-Picher P, Caya D, Biner S, Laprise R (2008b) Quantification of the lateral boundary forcing of a regional climate model using an ageing tracer. Mon Wea Rev 136:4980–4996. doi:10.1175/2008MWR2448.1

    Article  Google Scholar 

  • Lucas-Picher P, Boberg F, Christensen JH, Berg P (2012) Dynamical downscaling with reinitializations: a method to generate fine-scale climate data sets suitable for impact studies. J Hydrometeorol (Submitted to)

  • Maurer EP, Wood AW, Adam JC, Lettenmaier DP, Nijssen B (2002) A long-term hydrologically-based data set of land surface fluxes and states for the conterminous United States. J Climate 15:3237–3251

    Article  Google Scholar 

  • Mearns LO et al (2012) The North American regional climate change assessment program: overview of phase I results. Bull Am Meteor Soc 93:1337–1362. http://dx.doi.org/10.1175/BAMSD-11-00223.1

  • Miguez-Macho G, Stenchikov GL, Robock A (2004) Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J Geophys Res 109:D13104. doi:10.1029/2003JD004495

    Article  Google Scholar 

  • Miguez-Macho G, Stenchikov GL, Robock A (2005) Regional climate simulations over North America: interaction of local processes with improved large-scale flow. J Climate 18:1227–1246. doi:10.1175/JCLI3369.1

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi:10.1002/joc.1181

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682. doi:10.1029/97JD00237

    Article  Google Scholar 

  • Onogi K, Tsutsui J, Koide H et al (2007) The JRA-25 reanalysis. J Meteorol Soc Jpn 85:369–432. doi:10.2151/jmsj.85.369

    Article  Google Scholar 

  • Pohl B, Cretat J, Camberlin P (2011) Testing WRF capability in simulating the atmospheric water cycle over Equatorial East Africa. Clim Dyn 37:1357–1379. doi:10.1007/s00382-011-1024-2

    Article  Google Scholar 

  • Radu R, Déqué M, Somot S (2008) Spectral nudging in a spectral regional climate model. Tellus 60:885–897. doi:10.1111/j.1600-0870.2008.00343.x

    Article  Google Scholar 

  • Riette S, Caya D (2002) Sensitivity of short simulations to the various parameters in the new CRCM spectral nudging. Research Activities in Atmospheric and Oceanic Modelling, WMO/TD-1105, Rep. 32, H. Ritchie, Ed., WMO, 7.39–7.40

  • Rummukainen M (2010) State-of-the-art with regional climate models. Wiley Interdisciplinary Reviews, Climate Change 1:82–96. doi:10.1002/wcc.008

  • Sanchez-Gomez E, Somot S, Déqué M (2009a) Ability of an ensemble of regional climate models to reproduce the weather regimes during the period 1961–2000. Clim Dyn 33:723–736. doi:10.1007/s00382-008-0502-7

    Article  Google Scholar 

  • Sanchez-Gomez E, Somot S, Mariotti A (2009b) Future changes in the mediterranean water budget projected by an ensemble of regional climate models. Geophys Res Lett 36:L21401. doi:10.1029/2009GL040120

    Article  Google Scholar 

  • Sanchez-Gomez E, Somot S, Josey SA, Dubois C, Elguindi N, Déqué M (2011) Evaluation of the Mediterranean Sea water and heat budgets as simulated by an ensemble of high resolution regional climate models. Clim Dyn 37:2067–2086. doi:10.1007/s00382-011-1012-6

    Article  Google Scholar 

  • Seth A, Giorgi F (1998) The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model. J Climate 11:2698–2712. doi:10.1175/1520-0442(1998)011<2698:TEODCO>2.0.CO;2

    Article  Google Scholar 

  • Takle ES et al (1999) Project to intercompare regional climate simulations (PIRCS): description and initial results. J Geophys Res 104(D16):19443–19461. doi:10.1029/1999JD900352

    Article  Google Scholar 

  • Takle ES, Gutowski WJ, Arritt RW, Roads J, Meinke I, Rockel B, Jones CG, Zadra A (2007) Transferability intercomparison: an opportunity for new insight on the global water cycle and energy budget. Bull Am Meteor Soc 88:375–384. doi:10.1175/BAMS-88-3-375

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 re-analysis. Quart J R Meteor Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Voldoire A, et al. (2012) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn. online first, doi:10.1007/s00382-011-1259-y

  • von Storch H, Langenberg H, Feser F (2000) A spectral nudging technique for dynamical downscaling purposes. Mon Weather Rev 128:3664–3673

    Article  Google Scholar 

  • Xue Y, Vasic R, Janjic Z, Mesinger F, Mitchell KE (2007) Assess of dynamical downscaling of the continental US regional climate using the Eta/SSiB regional climate model. J Clim 20:4172–4193. doi:10.1175/JCLI4239.1

    Article  Google Scholar 

  • Yang Z, Arritt RW (2002) Tests of a perturbed physics ensemble approach for regional climate modeling. J Climate 15:2881–2896. doi:10.1175/1520-0442(2002)015<2881:TOAPPE>2.0.CO;2

    Article  Google Scholar 

  • Yang H-W, Wang B, Wang B (2012) Reduct of systematic biases in regional climate downscaling through ensemble forcing. Clim Dyn 38:655–665. doi:10.1007/s00382-011-1006-4

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from Fonds de recherche du Québec—Nature et technologies and a visiting scientist position at Meteo-France to the 1st author. This study is a contribution to the CORDEX project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Lucas-Picher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucas-Picher, P., Somot, S., Déqué, M. et al. Evaluation of the regional climate model ALADIN to simulate the climate over North America in the CORDEX framework. Clim Dyn 41, 1117–1137 (2013). https://doi.org/10.1007/s00382-012-1613-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1613-8

Keywords

Navigation