Skip to main content

Advertisement

Log in

Impact of intra-daily SST variability on ENSO characteristics in a coupled model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This paper explores the impact of intra-daily Sea Surface Temperature (SST) variability on the tropical large-scale climate variability and differentiates it from the response of the system to the forcing of the solar diurnal cycle. Our methodology is based on a set of numerical experiments based on a fully global coupled ocean–atmosphere general circulation in which we alter (1) the frequency at which the atmosphere sees the SST variations and (2) the amplitude of the SST diurnal cycle. Our results highlight the complexity of the scale interactions existing between the intra-daily and inter-annual variability of the tropical climate system. Neglecting the SST intra-daily variability results, in our CGCM, to a systematic decrease of 15% of El Niño—Southern Oscillation (ENSO) amplitude. Furthermore, ENSO frequency and skewness are also significantly modified and are in better agreement with observations when SST intra-daily variability is directly taken into account in the coupling interface of our CGCM. These significant modifications of the SST interannual variability are not associated with any remarkable changes in the mean state or the seasonal variability. They can therefore not be explained by a rectification of the mean state as usually advocated in recent studies focusing on the diurnal cycle and its impact. Furthermore, we demonstrate that SST high frequency coupling is systematically associated with a strengthening of the air-sea feedbacks involved in ENSO physics: SST/sea level pressure (or Bjerknes) feedback, zonal wind/heat content (or Wyrtki) feedback, but also negative surface heat flux feedbacks. In our model, nearly all these results (excepted for SST skewness) are independent of the amplitude of the SST diurnal cycle suggesting that the systematic deterioration of the air-sea coupling by a daily exchange of SST information is cascading toward the major mode of tropical variability, i.e. ENSO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • AchutaRao K, Sperber K (2002) Simulation of the El Niño Southern Oscillation: Results from the coupled model intercomparison project. Clim Dyn 19:191–209

    Article  Google Scholar 

  • Achutarao K, Sperber KR (2006) ENSO simulation in coupled ocean-atmosphere models: are the current models better? Clim Dyn 27:1–15

    Article  Google Scholar 

  • Alexander MA et al (2002) The atmospheric bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans. J Clim 15:2205–2231

    Article  Google Scholar 

  • An S-I, Wang B (2000) Interdecadal change of the structure of the ENSO mode and its impact on ENSO frequency. J Clim 13:2044–2055

    Article  Google Scholar 

  • Barnier B, Madec G, Penduff T, Molines J-M, Treguier A-M, Le Sommer J, Beckmann A, Biastoch A, Böning C et al (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn 56:543–567

    Article  Google Scholar 

  • Bellenger H, Duvel JP (2009) An analysis of ocean diurnal warm layers over tropical oceans. J Clim 22:3629–3646

    Article  Google Scholar 

  • Belmadani A, Dewitte B, An S-I (2010) ENSO feedbacks and associated time scales of variability in a multimodel ensemble. J Clim 23:3181–3204

    Article  Google Scholar 

  • Bernie DJ, Woolnough SJ, Slingo JM, Guilyardi E (2005) Modeling diurnal and intraseasonal variability of the ocean mixed layer. J Clim 18:1190–1202

    Article  Google Scholar 

  • Bernie DJ, Guilyardi E, Madec G, Slingo JM, Woolnough SJ (2007) Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 1: a diurnally forced OGCM. Clim Dyn 29:575–590

    Article  Google Scholar 

  • Bernie DJ, Guilyardi E, Madec G, Slingo JM, Woolnough SJ, Cole J (2008) Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 2: a diurnally coupled CGCM. Clim Dyn 31:909–925

    Article  Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pa-cific. Mon Weather Rev 97:163–172

    Article  Google Scholar 

  • Bretherton C, Smith C, Wallace J (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560

    Article  Google Scholar 

  • Brown JN, Fedorov AV, Guilyardi E (2011) How well do coupled models replicate ocean energetics relevant to ENSO? Clim Dyn. doi:10.1007/s00382-010-0926-8

  • Burgers G, Stephenson DB (1999) The “normality” of El Niño. Geophys Res Lett 26(8):1027–1030. doi:10.1029/1999GL900161

    Article  Google Scholar 

  • Burgers G, Jin F-F, Oldenborgh GJ (2005) The simplest ENSO recharge oscillator. Geophys Res Lett 32:L13706. doi:10.1029/2005GL022951

    Article  Google Scholar 

  • Chelton Dudley B et al (2001) Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J Clim 14:1479–1498

    Article  Google Scholar 

  • Clarke AJ (1994) Why are surface equatorial winds anomalously westerly under anomalous large-scale convection? J Clim 7:1623–1627

    Article  Google Scholar 

  • Clayson CA, Weitlich D (2007) Variability of tropical diurnal sea surface temperature. J Clim 20:334–352

    Article  Google Scholar 

  • Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) A seasonal-trend decomposition procedure based on loess (with discussion). J Off Stat 6:3–73

    Google Scholar 

  • Collins M, An SI, Cai W, Ganachaud A, Guilyardi E, Jin FF, Jochum M, Lengaigne M, Power S, Timmermann A (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geosci 3:391–397

    Article  Google Scholar 

  • Danabasoglu G, Large WG, Tribbia JJ, Gent PR, Briegleb BP, McWilliams JC (2006) Diurnal coupling in the tropical oceans of CCSM3. J Clim 19:2347–2365

    Article  Google Scholar 

  • Davey M, Huddleston M, Sperber K, Braconnot P, Bryan F, Chen D, Colman R, Cooper C, Cubasch U, Delecluse P (2002) STOIC: a study of coupled model climatology and variability in tropical ocean regions. Clim Dyn 18:403–420

    Article  Google Scholar 

  • Delecluse P, Davey MK, Kitamura Y, Philander SGH, Suarez M, Bengtsson L (1998) Coupled general circulation modeling of the tropical Pacific. J Geophys Res 103:14

    Article  Google Scholar 

  • Diggle PJ (1990) Time series: a biostatistical introduction, Chap. 4. Clarendon Press, Oxford

    Google Scholar 

  • Fischer AS, Terray P, Delecluse P, Gualdi S, Guilyardi E (2005) Two independent triggers for the Indian Ocean dipole/zonal mode in a coupled GCM. J Clim 18:3428–3449

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for the heat induced tropical circulation. Q J Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Gualdi S, Guilyardi E, Navarra A, Masina S, Delecluse P (2003a) The interannual variability in the tropical Indian Ocean as simulated by a CGCM. Clim Dyn 20:567–582

    Google Scholar 

  • Gualdi S, Navarra A, Guilyardi E, Delecluse P (2003a) Assessment of the tropical Indo-Pacific climate in the SINTEX CGCM. Ann Geophys 46:1–26

    Google Scholar 

  • Guilyardi E (2006) El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Clim Dyn 26:329–348

    Article  Google Scholar 

  • Guilyardi E, Delecluse P, Gualdi S, Navarra A (2003) Mechanisms for ENSO phase change in a coupled GCM. J Clim 16:1141–1158

    Article  Google Scholar 

  • Guilyardi E, Gualdi S, Slingo J, Navarra A, Delecluse P (2004) Representing El Niño in coupled ocean–atmosphere GCMs: the dominant role of the atmospheric component. J Clim 17:4623–4629

    Article  Google Scholar 

  • Guilyardi E, Braconnot P, Jin FF, Kim ST, Kolasinski M, Li T, Musat I (2009a) Atmosphere feedbacks during ENSO in a coupled GCM with a modified atmospheric convection scheme. J Clim 22:5698–5718

    Article  Google Scholar 

  • Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C (2009b) UNDERSTANDING EL NIÑO IN OCEAN–ATMOSPHERE GENERAL CIRCULATION MODELS. Bull Amer Meteor Soc 90:325–340

    Article  Google Scholar 

  • Ham YG, Kug JS, Kang IS, Jin FF, Timmermann A (2010) Impact of diurnal atmosphere–ocean coupling on tropical climate simulations using a coupled GCM. Clim Dyn 34:905–917

    Article  Google Scholar 

  • Hasegawa T, Hanawa K (2003) Heat content variability related to ENSO events in the Pacific. J Phys Oceanogr 33:407–421

    Article  Google Scholar 

  • Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  • Jin F-F, Kim ST, Bejarano L (2006) A coupled-stability index for ENSO. Geophys Res Lett 33:L23708–L23718

    Article  Google Scholar 

  • Jin EK, Kinter JL, Wang B, Park CK, Kang IS, Kirtman BP, Kug JS, Kumar A, Luo JJ, Schemm J (2008) Current status of ENSO prediction skill in coupled ocean–atmosphere models. Clim Dyn 31:647–664

    Article  Google Scholar 

  • Jochum M, Danabasoglu G, Holland M, Kwon YO, Large WG (2008) Ocean viscosity and climate. J Geophys Res 113:C06017

    Article  Google Scholar 

  • Kawai Y, Wada A (2007) Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: a review. J Oceanogr 63:721–744

    Article  Google Scholar 

  • Kirtman BP (1997) Oceanic Rossby waves dynamics and the ENSO period in a coupled model. J Clim 10:1690–1704

    Article  Google Scholar 

  • Kug J-S, Sooraj K-P, Li T, Jin F-F (2010) Precursors of the El Niño/La Niña onset and their interrelationship. J Geophys Res 115:D05106. doi:10.1029/2009JD012861

    Article  Google Scholar 

  • Lin JL (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean-atmosphere feedback analysis. J Clim 20:4497–4525

    Article  Google Scholar 

  • Lloyd J, Guilyardi E, Weller H, Slingo J (2009) The role of atmosphere feedbacks during ENSO in the CMIP3 models. Atmos Sci Lett 10:170–176

    Article  Google Scholar 

  • Lloyd J, Guilyardi E, Weller H (2011) The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part II: using AMIP runs to understand the heat flux feedback mechanisms. Clim Dyn 37(7–8):1271–1292

    Google Scholar 

  • Luo JJ, Masson S, Behera S, Delecluse P, Gualdi S, Navarra A, Yamagata T (2003) South Pacific origin of the decadal ENSO-like variation as simulated by a coupled GCM. Geophys Res Lett 30:2250

    Article  Google Scholar 

  • Luo JJ, Masson S, Behera S, Shingu S, Yamagata T (2005a) Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J Clim 18:4474–4497

    Article  Google Scholar 

  • Luo JJ, Masson S, Roeckner E, Madec G, Yamagata T (2005b) Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J Clim 18:2344–2360

    Article  Google Scholar 

  • Luo JJ, Masson S, Behera SK, Yamagata T (2008) Extended ENSO predictions using a fully coupled ocean–atmosphere model. J Clim 21:84–93

    Article  Google Scholar 

  • Madec G (2008) NEMO ocean engine. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France. No 27. ISSN No 1288-1619

  • Manganello JV, Huang B (2009) The influence of systematic errors in the Southeast Pacific on ENSO variability and prediction in a coupled GCM. Clim Dyn 32:1015–1034. doi:10.1007/s00382-008-0407-5

    Article  Google Scholar 

  • Masson S, Luo JJ, Madec G, Vialard J, Durand F, Gualdi S, Guilyardi E, Behera S, Delecluse P, et al. (2005) Impact of barrier layer on winter-spring variability of the southeastern Arabian Sea. Geophys Res Lett 32:L07703, 1–4

    Google Scholar 

  • Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteor Soc Jpn 44:25–43

    Google Scholar 

  • McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314:1740–1745

    Article  Google Scholar 

  • Meehl GA, Gent PR, Arblaster JM, Otto-Bliesner BL, Brady EC, Craig A (2001a) Factors that affect the amplitude of El Niño in global coupled climate models. Clim Dyn 17:515–526

    Article  Google Scholar 

  • Meehl GA, Lukas R, Kiladis GN, Wheeler M, Matthews A, Weickmann KM (2001b) A conceptual framework for time and space scale interactions in the climate system. Clim Dyn 17:753–775

    Article  Google Scholar 

  • Meinen CS, McPhaden MJ (2000) Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J Clim 13:3551–3559

    Article  Google Scholar 

  • Molines JM, Barnier B, Penduff T, Brodeau L, Treguier AM, Theetten S, Gurvan Madec (2006) Definition of the global 1/2° experiment with CORE interannual forcing, ORCA05-G50. LEGI report November 2006. LEGI-DRA-1-11-2006, http://www.ifremer.fr/lpo/drakkar/drakkar/configs/ORCA05/orca05_G50.pdf

  • Morcrette J-J, Smith L, Fouquart Y (1986) Pressure and temperature dependence of the absorption in longwave radiation parameterizations. Beitr Phys Atmos 59:455–469

    Google Scholar 

  • Morissey ML (1990) An evaluation of ship data in the equatorial western Pacific. J Clim 3:99–112

    Article  Google Scholar 

  • Navarra A, Gualdi S, Masina S, Behera S, Luo JJ, Masson S, Guilyardi E, Delecluse P, Yamagata T (2008) Atmospheric horizontal resolution affects tropical climate variability in coupled models. J Clim 21:730–750

    Article  Google Scholar 

  • Neale RB, Richter JH, Jochum M (2008) The impact of convection on ENSO: from a delayed oscillator to a series of events. J Clim 21:5904–5924

    Article  Google Scholar 

  • Neelin JD, Dijkstra HA (1995) Ocean-atmosphere interaction and the tropical climatology. Part I: the angers of flux correction. J Clim 8:1325–1342

    Article  Google Scholar 

  • Nordeng TE (1994) Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. Technical Memorandum 206, ECMWF, Reading, UK

    Google Scholar 

  • Park W, Keenlyside N, Latif M, Ströh A, Redler R, Roeckner E, Madec G (2009) Tropical Pacific climate and its response to global warming in the Kiel climate model. J Clim 22:71–92

    Article  Google Scholar 

  • Philip SY, Collins M, van Oldenborgh GJ, van den Hurk B (2010) The role of atmosphere and ocean physical processes in ENSO in a perturbed physics coupled climate model. Ocean Sci 6:441–459

    Article  Google Scholar 

  • Politis DN (1998) Computer intensive methods in statistical analysis. IEEE Signal Process Mag 15:39–55

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Reichler T, Kim J (2008) How well do coupled models simulate today’s climate? Bull Am Meteorol Soc 89:303–311

    Article  Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S et al (2003) The atmospheric general circulation model ECHAM5: Part 1: model description. Max-Planck-Institut für Meteorologie, Hamburg

  • Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2004) The atmospheric general circulation model ECHAM5 Part II: sensitivity of simulated climate to horizontal and vertical resolution. Max-Planck-Institute for Meteorology, MPI-Report 354

  • Slingo J, Inness P, Neale R, Woolnough S, Yang G (2003) Scale interactions on diurnal toseasonal timescales and their relevanceto model systematic errors. Ann Geophys 46(1):139–155

    Google Scholar 

  • Sun DZ, Yu Y, Zhang T (2009) Tropical water vapor and cloud feedbacks in climate models: a further assessment using coupled simulations. J Clim 22(5):1287–1304

    Article  Google Scholar 

  • Terray P (2010) Southern Hemisphere extra-tropical forcing: a new paradigm for El Niño-Southern Oscillation. Clim Dyn. doi:10.1007/s00382-010-0825-z

  • Terray P, Guilyardi E, Fischer AS, Delecluse P (2005) Dynamics of the Indian monsoon and ENSO relationships in the SINTEX global coupled model. Clim Dyn 24:145–168

    Article  Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800

    Article  Google Scholar 

  • Timmermann R, Goosse H, Madec G, Fichefet T, Ethe C, Duliere V (2005) On the representation of high latitude processes in the ORCA-LIM global coupled sea ice-ocean model. Ocean Model 8(1–2):175–201

    Article  Google Scholar 

  • Tozuka T, Luo JJ, Masson S, Behera SK, Yamagata T (2005) Annual ENSO simulated in a coupled ocean-atmosphere model. Dyn Atmos Oceans 39:41–60

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. Bull Amer Met Soc 78:2771–2777

    Article  Google Scholar 

  • Trenberth KE, Caron JM (2000) The Southern Oscillation revisited: sea level pressures, surface temperatures, and precipitation. J Clim 13:4358–4365

    Article  Google Scholar 

  • Trenberth KE et al (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103:14291–14324

    Article  Google Scholar 

  • Valcke (2006) OASIS3 user guide (prism_2-5). CERFACS technical report TR/CMGC/06/73, PRISM report no. 3, Toulouse

  • Van Oldenborgh GJ, Philip SY, Collins M (2005) El Niño in a changing climate: a multi-model study. Ocean Sci 1: 81–95, SRef-ID: 1812-0792/os/2005-1-8

  • Vialard J, Foltz G, McPhaden M, Duvel JP, de Boyer Montégut C (2008) Strong Indian Ocean sea surface temperature signals associated with the Madden-Julian Oscillation in late 2007 and early 2008. Geophys Res Lett 35:L19608, 1–5

  • Vialard J, Duvel JP, Mcphaden MJ, Bouruet-Aubertot P, Ward B, Key E, Bourras D, Weller R, Minnett P et al (2009) Cirene: air–sea interactions in the Seychelles–Chagos thermocline ridge region. Bull Am Meteorol Soc 90:45–61

    Article  Google Scholar 

  • von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, 484 pp. ISBN 0521 450713

  • Wang C, Picaut J (2004) Understanding ENSO physics: a review. In: C Wang, S-P Xie, Carton JA (eds) Earth’s climate: the ocean-atmosphere interaction. AGU Geophys Monogr Ser 147:21–48

  • Watanabe M, Chikira M, Imada Y, Kimoto M (2011) Convective control of ENSO simulated in MIROC. J Clim 24(2):543–562

    Article  Google Scholar 

  • Welch PD (1967) The use of fast Fourier Transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15:70–73

    Article  Google Scholar 

  • Wittenberg AT (2009) Are historical records sufficient to constrain ENSO simulations. Geophys Res Lett 36:L12702

    Article  Google Scholar 

  • Wittenberg AT, Rosati A, Lau N-C, Ploshay JJ (2006) GFDL’s CM2 global coupled climate models. Part III: tropical Pacific climate and ENSO. J Clim 19:698–722

    Article  Google Scholar 

  • Woolnough SJ, Vitart F, Balmaseda MA (2007) The role of the ocean in the Madden–Julian Oscillation: implications for MJO prediction. Q J Royal Meteorol Soc 133:117–128

    Article  Google Scholar 

  • Xue Y, Leetmaa A, Ji M (2000) ENSO prediction with Markov model: the impact of sea level. J Clim 13:849–871

    Article  Google Scholar 

  • Yeh SW, Dewitte B, Yim BY, Noh Y (2010) Role of the upper ocean structure in the response of ENSO-like SST variability to global warming. Clim Dyn 35:355–369

    Google Scholar 

  • Zhang Y, Norris JR, Wallace JM (1998) Seasonality of large scale atmosphere-ocean interaction over the North Pacific. J Clim 11:2473–2481

    Article  Google Scholar 

Download references

Acknowledgments

This work is a part of the EU-Japan collaboration build around the SINTEX-F coupled model. It is also a contribution to the MOU between the Earth Simulator Center (ESC), CNRS and IFREMER. All the computationally expensive experiments analysed in the study were performed on the Earth simulator. Our sensitivity experiments with 301 levels in the ocean have been double thanks to the outstanding computational performances offered by this unique supercomputer. S. Masson and G. Madec were supported by ANR (INLOES project). P. Terray benefited from the financial support from the Indo-French CEFIPRA project (No. 3907/1). Many thanks to R. Benshila, C. Talandier, A. Caubel, E. Maisonnave, M.A. Foujols, C. Levy, Y.Meursedoif, F. Pinsard, C. Deltel, S. Denvil and P. Brochard who have come to the ESC to implement, optimize and run the simulations. Their visit at the ESC was greatly facilitated by the kind help of A. Kurita, R. Itakura, A. Toya and M.-E. Demory. Graphics have been prepared using the SAXO package of S. Masson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Masson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masson, S., Terray, P., Madec, G. et al. Impact of intra-daily SST variability on ENSO characteristics in a coupled model. Clim Dyn 39, 681–707 (2012). https://doi.org/10.1007/s00382-011-1247-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1247-2

Keywords

Navigation