Skip to main content

Advertisement

Log in

Seawater density variations in the North Atlantic and the Atlantic meridional overturning circulation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Seawater property changes in the North Atlantic Ocean affect the Atlantic meridional overturning circulation (AMOC), which transports warm water northward from the upper ocean and contributes to the temperate climate of Europe, as well as influences climate globally. Previous observational studies have focused on salinity and freshwater variability in the sinking region of the North Atlantic, since it is believed that a freshening North Atlantic basin can slow down or halt the flow of the AMOC. Here we use available data to show the importance of how density patterns over the upper ocean of the North Atlantic affect the strength of the AMOC. For the long-term trend, the upper ocean of the subpolar North Atlantic is becoming cooler and fresher, whereas the subtropical North Atlantic is becoming warmer and saltier. On a multidecadal timescale, the upper ocean of the North Atlantic has generally been warmer and saltier since 1995. The heat and salt content in the subpolar North Atlantic lags that in the subtropical North Atlantic by about 8–9 years, suggesting a lower latitude origin for the temperature and salinity anomalies. Because of the opposite effects of temperature and salinity on density for both long-term trend and multidecadal timescales, these variations do not result in a density reduction in the subpolar North Atlantic for slowing down the AMOC. Indeed, the variations in the meridional density gradient between the subpolar and subtropical North Atlantic Ocean suggest that the AMOC has become stronger over the past five decades. These observed results are supported by and consistent with some oceanic reanalysis products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Balmaseda MA, Smith GC, Haines K, Anderson D, Palmer TN, Vidard A (2007) Historical reconstruction of the Atlantic meridional overturning circulation from the ECMWF operational ocean reanalysis. Geophys Res Lett 34:L23615. doi:10.1029/2007GL031645

    Article  Google Scholar 

  • Bell GD, Chelliah M (2006) Leading tropical modes associated with interannual and multidecadal fluctuations in north Atlantic hurricane activity. J Clim 19:590–612

    Article  Google Scholar 

  • Boyer TP, Levitus S, Antonov JI, Locarnini RA, Garcia HE (2005) Linear trends in salinity for the World Ocean, 1955–1998. Geophys Res Lett 32:L01604. doi:10.1029/2004GL021791

    Article  Google Scholar 

  • Boyer TP et al (2006) World ocean database 2005. In: Levitus S et al (eds) NOAA atlas NESDIS, vol 60. US Government Printing Office, Washington DC, 190 pp

  • Boyer TP et al (2007) Changes in freshwater content in the North Atlantic Ocean 1955–2006. Geophys Res Lett 34:L16603. doi:10.1029/2007GL030126

    Article  Google Scholar 

  • Bryan K, Cox M (1967) A numerical investigation of the oceanic general circulation. Tellus 19:54–80

    Article  Google Scholar 

  • Bryden HL, Longworth HL, Cunningham SA (2005) Slowing of the Atlantic meridional overturning circulation at 25°N. Nature 438:655–657

    Article  Google Scholar 

  • Carton JA, Giese BS (2008) A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon Weather Rev 136:2999–3017

    Article  Google Scholar 

  • Conkright ME et al (2002) World Ocean Database 2001. In: Levius S (eds) NOAA Atlas NESDIS 42, vol 1. US Government Printing Office, Washington DC, 167 pp

  • Curry R, Dickson B, Yashayaev I (2003) A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature 426:826–829

    Article  Google Scholar 

  • Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16:661–676

    Article  Google Scholar 

  • Dickson B et al (2002) Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature 416:832–837

    Article  Google Scholar 

  • Dijkstra HA, te Raa L, Schmeits M, Gerrits J (2006) On the physics of the Atlantic multidecadal oscillation. Ocean Dyn 56:36–50

    Article  Google Scholar 

  • Dong BW, Sutton TT (2002) Adjustment of the coupled ocean–atmosphere system to a sudden change in the thermohaline circulation. Geophys Res Lett 29:1728. doi:10.1029/2002GL015229

    Article  Google Scholar 

  • Enfield DB, Mestas-Nunez AM, Trimble PJ (2001) The Atlantic Multidecadal Oscillation and its relationship to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080

    Article  Google Scholar 

  • Gill AE (1982) Atmosphere–ocean dynamics. Academic Press, New York, p 662

    Google Scholar 

  • Goldenberg SB, Landsea CW, Maestas-Nunez AM, Gray WM (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293:474–479

    Article  Google Scholar 

  • Gray ST, Graumlich JL, Betancourt JL, Pederson GT (2004) A tree-ring based reconstruction of the Atlantic multidecadal oscillation since 1567 A.D. Geophys Res Lett 31:L12205. doi:10.1029/2004GL019932

    Article  Google Scholar 

  • Hegerl GC et al (2007) Understanding and attributing climate change. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York

  • Hughes T, Weaver A (1994) Multiple equilibrium of an asymmetric two-basin model. J Phys Oceanogr 24:619–637

    Article  Google Scholar 

  • Josey SA, Kent EC, Taylor PK (1998) The Southampton Oceanography Centre (SOC) ocean–atmosphere heat, momentum and freshwater flux atlas. Southampton Oceanography Centre Report No. 6, 30 pp

  • Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi:10.1029/2005GL024233

    Article  Google Scholar 

  • Kohl A, Dommenget D, Ueyoshi K, Stammer D (2006) The Global ECCO 1952 to 2001 ocean synthesis. ECCO Report No. 40

  • Krebs U, Timmermann A (2007) Tropical air–sea interactions accelerate the recovery of the Atlantic Meridional Overturning Circulation after a major shutdown. J Clim 20:4940–4956

    Article  Google Scholar 

  • Kuhlbrodt T et al (2007) On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys 45:RG2001. doi:10.1029/2004RG000166

    Article  Google Scholar 

  • Latif M, Roeckner E, Mikolajewicz U, Voss R (2000) Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation. J Clim 13:1809–1813

    Article  Google Scholar 

  • Lozier MS, Leadbetter S, Williams RG, Roussenov V, Reed MSC, Moore NJ (2008) The spatial pattern and mechanisms of heat-content change in the North Atlantic. Science 319:800–803

    Article  Google Scholar 

  • Manabe S, Stouffer RJ, Spelman MJ, Bryan K (1991) Transient response of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I: annual mean response. J Clim 4:785–818

    Article  Google Scholar 

  • Mann ME, Emanuel KA (2006) Atlantic hurricane trends linked to climate change. Eos Trans AGU 87:233–244. doi:10.1029/2006EO240001

    Google Scholar 

  • McCabe G, Palecki M, Betancourt J (2004) Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc Natl Acad Sci 101:4136–4141

    Article  Google Scholar 

  • Park YG (1999) The stability of thermohaline circulation in a two-box model. J Phys Oceanogr 29:3101–3110

    Article  Google Scholar 

  • Rabe B, Schott FA, Kohl A (2008) Mean circulation and variability of the tropical Atlantic during 1952–2001 in the GECCO assimilation fields. J Phys Oceanogr 38:177–192

    Article  Google Scholar 

  • Rosati A, Harrison M, Wittenberg A, Zhang S (2004) NOAA/GFDLocean data assimilation activities. CLIVAR Workshop on Ocean Reanalysis, 9 November 2004. NCAR, Boulder

  • Santer BD et al (2006) Forced and unforced ocean temperature changes in Atlantic and Pacific tropical cyclogenesis regions. Proc Natl Acad Sci 203:13905–13910

    Article  Google Scholar 

  • Schmittner A, Chiang JCH, Hemming SR (2007) Ocean circulation: mechanisms and impacts. Geophysical Monograph Series, vol 173. American Geophysical Union, Washington, 392 pp

  • Scott J, Marotzke J, Stone P (1999) Interhemispheric thermohaline circulation in a coupled box model. J Phys Oceanogr 29:351–365

    Article  Google Scholar 

  • Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 13:224–230

    Article  Google Scholar 

  • Thorpe RB, Gregory JM, Johns TC, Wood RA, Mitchell JFB (2001) Mechanisms determining the Atlantic thermohaline circulation response to greenhouse gas forcing in a non-flux-adjusted coupled climate model. J Clim 14:3102–3116

    Article  Google Scholar 

  • Timmermann A et al (2007) The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J Clim 20:4899–4919

    Article  Google Scholar 

  • Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim Changes 54:251–267

    Article  Google Scholar 

  • Vellinga M, Wu P (2004) Low-latitude freshwater influences on centennial variability of the Atlantic thermohaline circulation. J Clim 17:4498–4511

    Article  Google Scholar 

  • Wang C, Lee SK, Enfield DB (2008a) Atlantic warm pool acting as a link between Atlantic multidecadal oscillation and Atlantic tropical cyclone activity. Geochem Geophys Geosyst 9:Q05V03. doi:10.1029/2007GC001809

    Article  Google Scholar 

  • Wang C, Lee SK, Enfield DB (2008b) Climate response to anomalously large and small Atlantic warm pools during the summer. J Clim 21:2437–2450

    Article  Google Scholar 

  • Yin J, Schlesinger ME, Andronova NG, Malyshev S, Li B (2006) Is a shutdown of the thermohaline circulation irreversible? J Geophys Res 111:D12104. doi:10.1029/2005JD006562

    Article  Google Scholar 

  • Zhang R (2007) Anticorrelated multidecadal variations between surface and subsurface tropical North Atlantic. Geophys Res Lett 34:L12713. doi:10.1029/2007GL030225

    Article  Google Scholar 

  • Zhang R, Delworth TL, Held I (2007) Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophys Res Lett 34:L02709. doi:10.1029/2006GL028683

    Article  Google Scholar 

Download references

Acknowledgments

We thank reviewers’ suggestions and comments on this manuscript. We also thank Tim Boyer who provided us the updated salinity data before its public release. Gail Derr gave some editorial comments on an early version of the manuscript. This work was supported by a grant from National Oceanic and Atmospheric Administration (NOAA) Climate Program Office and by the base funding of NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML). The findings and conclusions in this report are those of the author(s) and do not necessarily represent the views of the funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunzai Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Dong, S. & Munoz, E. Seawater density variations in the North Atlantic and the Atlantic meridional overturning circulation. Clim Dyn 34, 953–968 (2010). https://doi.org/10.1007/s00382-009-0560-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-009-0560-5

Keywords

Navigation