Skip to main content

Advertisement

Log in

Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The mechanisms controlling the decadal to multidecadal variability of the Atlantic Meridional Overturning Circulation (MOC) and its influence on the atmosphere are investigated using a control simulation with the IPSL-CM4 climate model. The multidecadal fluctuations of the MOC are mostly driven by deep convection in the subpolar gyre, which occurs south of Iceland in the model. The latter is primarily influenced by the anomalous advection of salinity due to changes in the East Atlantic Pattern (EAP), which is the second mode of atmospheric variability in the North Atlantic region. The North Atlantic Oscillation is the dominant mode, but it plays a secondary role in the MOC fluctuations. During summer, the MOC variability is shown to have a significant impact on the atmosphere in the North Atlantic–European sector. The MOC influence is due to an interhemispheric sea surface temperature (SST) anomaly with opposite signs in the two hemispheres but largest amplitude in the northern one. The SST pattern driven by the MOC mostly resembles the model Atlantic Multidecadal Oscillation (AMO) and bears some similarity with the observed one. It is shown that the AMO reflects both the MOC influence and the local atmospheric forcing. Hence, the MOC influence on climate is best detected using lagged relations between climatic fields. The atmospheric response resembles the EAP, in a phase that might induce a weak positive feedback on the MOC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Bacon S, Gould WJ, Jia Y (2003) Open-ocean convection in the Irminger Sea. Geophys Res Lett 30. doi:10.1029/2002GL016271

  • Bentsen M, Drange H, furevik T, Zhou T (2004) Simulated variability of the Atlantic meridional overturning circulation. Clim Dyn 22:701–720

    Article  Google Scholar 

  • de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2003) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003. doi:10.1029/2004JC002378

    Google Scholar 

  • Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560

    Article  Google Scholar 

  • Cheng W, Bleck R, Rooth C (2004) Multidecadal thermohaline variability in an ocean–atmosphere general circulation model. Clim Dyn 22:573–590

    Google Scholar 

  • de Coëtlogon G, Frankignoul C (2003) The persistence of winter sea surface temperature in the North Atlantic. J Clim 16:1364–1377

    Google Scholar 

  • Collins M, Botzet M, Carril AF, Drange H, Jouzeau A, Latif M, Masina S, Otteraa OH, Pohlmann H, Sorteberg A, Sutton R, Terray L (2006) Interannual to decadal climate predictability in the North Atlantic: a multimodel-ensemble study. J Clim 19:1195–1203

    Article  Google Scholar 

  • Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi JJM, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science 317:935–938

    Article  Google Scholar 

  • Czaja A, Frankignoul C (1999) Influence of the North Atlantic SST on the atmospheric circulation. Geophys Res Lett 26(19):2969–2972

    Article  Google Scholar 

  • Czaja A, Frankignoul C (2002) Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J Clim 15:606–623

    Article  Google Scholar 

  • Danabasoglu G (2008) On multi-decadal variability of the Atlantic meridional overturning circulation in the Community Climate System Model Version 3 (CCSM3). J Clim (in press)

  • Delworth TL, Greatbatch RJ (2000) Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J Clim 13:1481–1495

    Article  Google Scholar 

  • Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16:661–676

    Article  Google Scholar 

  • Delworth TL, Manabe S, Stouffer RJ (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J Clim 6:1993–2011

    Article  Google Scholar 

  • Delworth TL, Manabe S, Stouffer RJ (1997) Multidecadal climate variability in the Greenland Sea and surrounding regions: a coupled model simulation. Geophys Res Lett 24:257–260

    Article  Google Scholar 

  • Deshayes J, Frankignoul C (2007) Formation and export of deep water in the Labrador and Irminger seas in a gcm. Deep-Sea Res Part I 54:510–532

    Article  Google Scholar 

  • Dima M, Lohmann G (2007) A hemispheric mechanism for the Atlantic Multidecadal Oscillation. J Clim 20:2706–2719

    Article  Google Scholar 

  • Dong B, Sutton RT (2005) Mechanism of interdecadal thermohaline circulation variability in a coupled ocean–atmosphere gcm. J Clim 18:1117–1135

    Article  Google Scholar 

  • Eden C, Willebrand J (2001) Mechanisms of interannual to decadal variability of the North Atlantic circulation. J Clim 14:2266–2280

    Article  Google Scholar 

  • Fichefet T, Maqueda MAM (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:2609–12

    Article  Google Scholar 

  • Folland CK, Colman AW, Rowell DP, Davey MK (2001) Predictability of northeast Brazil rainfall and real-time forecast skill 1987–98. J Clim 14:1937–1958

    Article  Google Scholar 

  • Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453–457

    Article  Google Scholar 

  • Goldenberg SB, Landsea CW, Mestas-Nanez AM, Gray WM (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293:474–479

    Article  Google Scholar 

  • Gregory JM, Dixon KW, Stouffer RJ, Weaver AJ, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Sokolov AP, Thorpe RB (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett 32:L12703. doi:10.1029/2005GL023209

    Article  Google Scholar 

  • Guemas V, Salas-Melia D (2007) Simulation of the Atlantic meridional overturning circulation in an atmosphere-ocean global coupled model. part 1: a mechanism governing the variability of ocean convection in a preindustrial experiment. Clim Dyn. doi:10.1007/s00382-007-0336-8

  • Hakkinen S (1999) Variability of the simulated meridional heat transport in the North Atlantic for the period 1951-1993. J Geophys Res 104:10,991–11,007

    Article  Google Scholar 

  • Hawkins E, Sutton R (2007) Variability of the Atlantic thermohaline circulation described by three-dimensional empirical orthogonal functions. Clim Dyn 29:745–762

    Article  Google Scholar 

  • Herweijer C, Seager R, Winton M, Clement A (2005) Why the ocean heat tranport warms the global mean climate. Tellus 57A:662–675

    Article  Google Scholar 

  • Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY, Krinner G, Van PL, Li ZX, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27:787–813

    Article  Google Scholar 

  • Jungclaus JH, Haak H, Latif M, Mikolajewicz U (2005) Arctic North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18:4013–4031

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Met Soc 77:437–471

    Article  Google Scholar 

  • Kanzow T, Cunningham SA, Rayner D, Hirschi JJM, Johns WE, Baringer MO, Bryden HL, Beal LM, Meinen CS, Marotzke J (2007) Observed flow compensation associated with the MOC at 26.5°N in the Atlantic. Science 317:938–941

    Article  Google Scholar 

  • Kerr RA (2005) Atlantic climate pacemaker for millenia past, decades hence? Science 309:41–43

    Article  Google Scholar 

  • Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708 doi:10.1029/2005GL024233

    Article  Google Scholar 

  • Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic Multidecadal Oscillation. Geophys Res Lett 33:1605–1614

    Article  Google Scholar 

  • Krinner G, Viovy N, de Noblet N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice C (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob Biogeochem Cyc 19:1–33 doi:1029/2003GB002199

    Article  Google Scholar 

  • Kushnir Y (1994) Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J Clim 7:141–157

    Article  Google Scholar 

  • Latif M, Roeckner E, Botzet M, Esch M, Haak H, Hagemann S, Jungclaus J, Legutke S, Marsland S, Mikolajewicz U (2004) Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J Clim 17:1605–1614

    Article  Google Scholar 

  • Latif M, Collins M, Pohlmann H, Keenlyside N (2006) A review of predictability studies of Atlantic sector climate on decadal time scales. J Clim 19:5971–5987

    Article  Google Scholar 

  • Levermann A, Griesel A, Hofmann M, Montoya M, Rahmstorf S (2005) Dynamic sea level changes following changes in the thermohaline circulation. Clim Dyn 24:347–354

    Article  Google Scholar 

  • Lu R, Dong B, Ding H (2006) Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon. Geophys Res Lett 33:L24701 doi:10.1029/2006GL027655

    Article  Google Scholar 

  • Madec G, Delecluse P, Imbard M, Lévy C (1998) Opa 8.1, ocean general circulation model reference manual. Note du Pôle de modélisation IPSL (11)

  • Marsh R, de Cuevas BA, Coward AC, Bryden HL, Alvarez M (2005) Thermohaline circulation at three key sections in the North Atlantic over 1985–2002. Geophys Res Lett 32:L10604. doi:1029/2004GL022281

    Article  Google Scholar 

  • Marti O, Braconnot P, Bellier J, Benshila R, Bony S (2005) The New IPSL Climate System Model: IPSL-CM4. Note du Pôle de modélisation IPSL (26)

  • Marti O, Braconnot P, Dufresne JL, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubel A, Codron F, de Noblet N, Denvil S, Fairhead L, Fichefet T, Foujols MA, Friedlingstein P, Goosse H, Grandpeix JY, Guilyardi E, Hourdin F, Krinner G, Lévy C, Madec G, Mignot J, Musat I, Swingedouw D, Talandier C (2008) Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution (in press)

  • Mignot J, Frankignoul C (2005) The variability of the Atlantic meridional overturning circulation, the North Atlantic Oscillation, and the El Niño Southern Oscillation in the Bergen Climate Model. J Clim 18:2361–2375

    Article  Google Scholar 

  • Mignot J, Ganopolski A, Levermann A (2007) Atlantic subsurface temperatures: response to a shutdown of the overturning circulation and consequences for its recovery. J Clim 20:4884–4898

    Article  Google Scholar 

  • Morgan P (2006) A library of matlab computational routines for the properties of sea water. http://www.cmar.csiro.au/datacentre/ext_docs/seawater.htm

  • Park W, Latif M (2005) Ocean dynamics and the nature of air–sea interactions over the North Atlantic at decadal time scales. J Clim 18:982–995

    Article  Google Scholar 

  • Peng S, Robinson WA, Li S (2002) North Atlantic SST forcing of the NAO and relationships with intrinsic hemispheric variability. Geophys Res Lett 29(8):1276. doi:10.1029/2001GL014043

    Article  Google Scholar 

  • Pickart RS, Spall MA (2007) Impact of Labrador Sea convection on the North Atlantic meridional overturning circulation. J Phys Oceanogr 37:2207–2227

    Article  Google Scholar 

  • Pickart RS, Straneo F, Moore GWK (2003) Is Labrador Sea Water formed in the Irminger basin? Deep-Sea Res Part I 50:23–52

    Article  Google Scholar 

  • Pohlmann H, Sienz F, Latif M (2006) Influence of the multidecadal Atlantic meridional overturning circulation variability on European climate. J Clim 19:6062–6067

    Article  Google Scholar 

  • Reverdin G et al (2003) North Atlantic ocean surface currents. J Geophys Res 108. doi:10.1029/2001JC001020

  • Roberts J, Roberts TD (1978) Use of the butterworth low-pass filter for oceanographic data. J Geophys Res 83:5510–5514

    Article  Google Scholar 

  • Rodwell DP, Zwiers FW (1999) The global distribution of sources of atmospheric decadal variability and mechanisms over the Tropical Pacific and Southern North America. Clim Dyn. 15:751–772

    Article  Google Scholar 

  • Rowell DP, Folland CK, Maskell K, Ward MN (1995) Variability of summer rainfall over tropical North-Africa (1906–92) observations and modelling. Q J R Meteorolog Soc 121:669–704

    Google Scholar 

  • Schott FA, Zantopp R, Stramma L, Dengler M, Fischer J, Wibaux M (2004) Circulation and deep water export at the western exit of the subpolar North Atlantic. J Phys Oceanogr 34:817–843

    Article  Google Scholar 

  • Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ, Hurlin W, Weaver AJ, Eby M, Flato GM, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montaya M, Murakami S, Nawrath S, Oka A, Peltier WR, Robitaille DY, Sokolov A, Vettoretti G, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365–1387

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2003) Influence of the ocean on North Atlantic climate variability 1871–1999. J Clim 16:3296–3313

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2005) Atlantic ocean forcing of North American and European summer climate. Science 309:115–118

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2007) Climate response to basin-scale warming and cooling of the North Atlantic ocean. J Clim 20:891–907

    Article  Google Scholar 

  • Swingedouw D, Braconnot P, Delecluse P, Guilyardi E, Marti O (2006) The impact of global freshwater forcing on the thermohaline circulation: adjustment of North Atlantic convection sites in a CGCM. Clim Dyn. doi:10.1007/s00382-006-0171-3

  • Terray L, Sevault E, Guilyardi E, Thual O (1995) OASIS 2.0, user’s guide and reference manual. CERFACS Technical Report

  • Timmermann A, Latif M, Voss R, Grotzner A (1998) Northern hemispheric interdecadal variability: a coupled air–sea mode. J Clim 11:1906–1931

    Google Scholar 

  • Timmermann A, An SI, Krebs U, Goosse H (2005) ENSO suppression due to weakening of the North Atlantic thermohaline circulation. J Clim 18:3122–3139

    Article  Google Scholar 

  • Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim Chan 54:251–267

    Article  Google Scholar 

  • Vellinga M, Wu P (2004) Low latitude freshwater influence on centennial variability of the Atlantic thermohaline circulation. J Clim 17:4498–4511

    Article  Google Scholar 

  • Winton M (2003) On the climatic impact of ocean circulation. J Clim 16:2875–2889

    Article  Google Scholar 

  • Wunsch C, Heimbach P (2006) Estimated decadal changes in the North Atlantic meridional overturning circulation and heat flux 1993–2004. J Phys Oceanogr 36:2012–2024

    Article  Google Scholar 

  • Zhang R, Delworth TL (2006) Impact of the Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712. doi:10.1029/2006GL026267

    Article  Google Scholar 

  • Zhu X, Jungclaus J (2008) Interdecadal variability of the meridional overturning circulation as an ocean internal mode. Clim Dyn.doi:10.1007/s00382-008-0383-9

Download references

Acknowledgments

We thank the IPSL group “Pôle de Modélisation du climat” for providing the data of the simulation. Thanks are also due to the two anonymous reviewers, whose comments led to an improved presentation of the work. Support from the European FP6 project DYNAMITE (contract 003903-GOCE) and, to CF, from the Institut Universitaire de France, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rym Msadek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Msadek, R., Frankignoul, C. Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model. Clim Dyn 33, 45–62 (2009). https://doi.org/10.1007/s00382-008-0452-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-008-0452-0

Keywords

Navigation