Skip to main content

Advertisement

Log in

Influence of various forcings on global climate in historical times using a coupled atmosphere–ocean general circulation model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The results of a simulation of the climate of the last five centuries with a state-of-the-art coupled atmosphere–ocean general circulation model are presented. The model has been driven with most relevant forcings, both natural (solar variability, volcanic aerosol) and anthropogenic (greenhouse gases, sulphate aerosol, land-use changes). In contrast to previous GCM studies, we have taken into account the latitudinal dependence of volcanic aerosol and the changing land cover for a period covering several centuries. We find a clear signature of large volcanic eruptions in the simulated temperature record. The model is able to simulate individual extreme events such as the “year without a summer” 1816. Warm periods in the early seventeenth century and the second half of eighteenth century occur in periods of increased solar irradiation. Strong warming is simulated after 1850, in particular over land, going along with an increase of the positive North Atlantic Oscillation (NAO) phase. Consistent circulation anomalies are simulated in multidecadal means with similarity to observed and reconstructed anomalies, for example during the late seventeenth and early eighteenth century. The model is able to reproduce some of the observed or reconstructed regional patterns. We find that cooling around 1700 and at the end of the eighteenth century is less than in other studies, due to the relatively small variations in solar activity and the relatively modest volcanic forcing applied here. These cooling events are not restricted to Europe and North America, but cover most of the Northern Hemisphere. Colder than average conditions, for example during the late seventeenth and early eighteenth centuries, go along with a decrease in pressure difference between low and high latitudes and a decrease of the North Atlantic Oscillation. This favours positive sea ice anomalies east of Greenland and around Iceland, leading to widespread negative temperature anomalies over Europe. We also find characteristic blocking patterns over Western Europe, in particular during autumn, which contribute to the advection of cold air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ammann CM, Meehl GA, Washington WM, Zender CA (2003) A monthly and latitudinally varying volcanic forcing data set in simulations of 20th century climate. Geophys Res Lett 30. DOI 10.1029/2003GL016875

  • Andronova NG, Rozanov EV, Yang F, Schlesinger ME, Stenchikov GL (1999) Radiative forcing by volcanic aerosol from 1850 to 1994. J Geophys Res 104:16807–16826

    Article  Google Scholar 

  • Bauer E, Claussen M, Brovkin V, Huenerbein A (2003) Assessing climate forcings of the Earth system for the past millennium. Geophys Res Lett 30. DOI 10.1029/2002GL016639

  • Bard E, Raisbeck G, Yiou F, Jouzel J (2000) Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus 52:985–992

    Article  Google Scholar 

  • Bertrand C, Loutre MF, Crucifix M, Berger A (2002) Climate of the last millennium: a sensitivity study. Tellus 54A:221–244

    Google Scholar 

  • Betts RA (2001) Biogeophysical impacts of land use on present-day climate: near surface temperature and radiative forcing. Atm Sci Lett 1, DOI 10.1006/asle.2001.0023

  • Boucher O, Lohmann U (1995) The sulfate-CCN-cloud albedo effect: a sensitivity study with two general circulation models. Tellus B47:281–300

    Google Scholar 

  • Bounoua L, de Fries R, Collatz G, Sellers P, Khan H (2002) Effects of land cover conversion on surface climate. Clim Change 52:29–64

    Article  Google Scholar 

  • Brázdil R, Pfister C, Wanner H, von Storch H, Luterbacher J (2005) Historical climatology in Europe—the state of the art. Clim Change (in press)

  • Briffa KR, Osborn TJ, Schweingruber FH, Harris IC, Jones PD, Shiyatov SG, Vaganov EA (2001) Low-frequency temperature variations from a northern tree ring density network. J Geophys Res 106:2929–2942

    Article  Google Scholar 

  • Brovkin V, Ganopolsky A, Claussen M, Kubatzki C, Pethoukov V (1999) Modelling climate response to historical land cover change. Glob Ecol Biogeogr 8:509–517

    Article  Google Scholar 

  • Budner D, Cole-Dai J (2003) The number and magnitude of large volcanic eruptions between 904 and 1865 AD: Quantitative evidence for a new South Pole ice core. In: Volcanism and the Earth’s atmosphere. Geophys Monogr 139, American Geophysical Union

  • Chase T, Pielke R, Kittel T, Nemani R, Running S (2000) Simulated impact of historical land cover changes on global climate in northern winter. Climate Dynam 16:93–105

    Article  Google Scholar 

  • Chase T, Pielke R, Kittel T, Zhao M, Pitman A, Running S, Nemani R (2001) Relative climatic effect of landcover change and elevated carbon dioxide combined with aerosols: a comparison of model results and observations. J Geophys Res 106:31685–31691

    Article  Google Scholar 

  • Claussen M, Lohmann U, Roeckner E, Schulzweida U (1994) A global data set of land-surface parameters. MPI Report 135, Max-Planck-Institut für Meteorologie, Hamburg

  • Cox PM, Betts RA, Bunton CB, Essery RLH, Rowntree PR, Smith J (1999) The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dynam 15:183–203

    Article  Google Scholar 

  • Crowley TJ (2000) Causes of climate change over the last 2000 years. Science 289:270–277

    Article  PubMed  Google Scholar 

  • Cubasch U, Voss R (2000) The influence of total solar irradiance on climate. Space Sci Rev 94:185–198

    Article  Google Scholar 

  • Cubasch U, Hegerl GC, Voss R, Waszkewitz J, Crowley TC (1997) Simulation with an O-AGCM of the influence of variations of the solar constant on the global climate. Climate Dynam 13:757–767

    Article  Google Scholar 

  • Druffel ERM, Griffin S (1993) Large variations of surface ocean radiocarbon: evidence of circulation changes in the southwestern Pacific since 1657 AD. Paleoceanography 13:412–426

    Google Scholar 

  • Eddy J (1976) The Late Maunder Minimum. Science 192:1189–1202

    Article  Google Scholar 

  • Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295:2250–2253

    Article  PubMed  Google Scholar 

  • Feichter J, Kjellström E, Rodhe H, Dentener F, Lelieveld J, Roelofs GJ (1996) Simulation of the tropospheric sulfur cycle in a global climate model. Atmos Environ 30:1693–1707

    Article  Google Scholar 

  • Feichter J, Lohmann U, Schult I (1997) The atmospheric sulfur cycle and its impact on the shortwave radiation. Climate Dynam 13:235–246

    Article  Google Scholar 

  • Foukal P, North G, Wigley T (2004) A stellar view on solar variations and climate. Science 306:68–69

    Article  PubMed  Google Scholar 

  • Glaser R (2001) Klimageschichte Mitteleuropas: 1000 Jahre Wetter, Klima, Katastrophen. Wiss. Buchgesellschaft Darmstadt

  • Glück MF, Stockton CW (2001) Reconstruction of the North Atlantic Oscillation, 1429–1983. Int J Clim 21:1453–1465

    Article  Google Scholar 

  • González-Rouco F, von Storch H, Zorita E (2003) Deep soil temperatures as proxy for surface air-temperatures in a coupled model simulation of the last thousand years. Geophys Res Lett 30. DOI 10.1029/2003GL018264

  • Govindasamy B, Duffy P, Caldera K (2001) Land use change and Northern Hemisphere cooling. Geophys Res Lett 28:291–294

    Article  Google Scholar 

  • Hagemann S, Botzet M, Dümenil L, Machenhauer B (1999) Derivation of global GCM boundary conditions from 1 km land use satellite data. MPI Report 289, Max-Planck-Institut für Meteorologie, Hamburg

  • Hansen J, Sato M, Nazarenko L, Ruedy R, Lacis A, Koch D, Tegen I, Hall T, Shindell D, Santer B, Stone P, Novakov T, Thomason L, Wang R, Wang Y, Jacob D, Hollandsworth S, Bishop L, Logan J, Thompson A, Stolarski R, Lean J, Willson R, Levitus S, Antonov J, Rayner N, Parker D, Christy J (2002) Climate forcings in Goddard Institute for Space Studies SI2000 simulations. J Geophys Res 107. DOI 10.1029/2001JD001143

  • Harington CR (ed) (1992) The year without a summer?—World climate in 1816. Canadian Museum of Nature, Ottawa, 576 pp

    Google Scholar 

  • Hegerl GC, Hasselmann K, Cubasch U, Mitchell JFB, Roeckner E, Voss R, Waszkewitz J (1997) Multi-fingerprint detection and attribution analysis of greenhouse gas, greenhouse gas-plus-aerosol and solar forced climate. Climate Dynam 13:613–634

    Article  Google Scholar 

  • Hendy EJ, Gagan MK, Alibert CA, McCulloch MT, Lough JM, Isdale PJ (2002) Abrupt decrease in tropical Pacific sea surface salinity at the end of the Little Ice Age. Science 295:1511–1514

    Article  PubMed  Google Scholar 

  • Huang SH, Pollack NH, Shen PY (2000) Temperature trends over the past five centuries reconstructed from borehole temperatures. Nature 403:756–758

    Article  PubMed  Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, 881 pp

  • Jones PD, Mann ME (2004) Climate over past millennia. Rev Geophys 42. DOI 2003RG00143

  • Klein Goldewijk K (2001) Estimating global land use change over the past 300 years: the HYDE database. Glob Biogeochem Cycl 15:415–433

    Article  Google Scholar 

  • Lamb HH (1970) Volcanic dust in the atmosphere; with a chronology and assessment of its meteorological significance. Philos Trans R Soc Lond A 266:425–533

    Article  Google Scholar 

  • Lamb HH (1982) Climate, history and the modern world. Methuen & Co, London

    Google Scholar 

  • Latif M, Roeckner E, Mikolajewicz U, Voss R (2000) Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation. J Climate 13:1809–1813

    Article  Google Scholar 

  • Lean J, Beer J, Bradley R (1995) Reconstruction of solar irradiance since 1610: implications for climate change. Geophys Res Lett 22:3195–3198

    Article  Google Scholar 

  • Lohmann U, Feichter J (1997) Impact of sulfate aerosols on albedo and lifetime of clouds: A sensitivity study with the ECHAM4 GCM. J Geophys Res 102:13685–13700

    Article  Google Scholar 

  • Lorenz S, Lohmann G (2004) Acceleration technique for Milankovitch type forcing in a coupled atmosphere-ocean circulation model: method and application for the Holocene. Climate Dynam 23:727–743

    Article  Google Scholar 

  • Luterbacher J (2001) The Late Maunder Minimum. In: Jones PD, Ogilvie AEJ, Davies TD, Briffa KR (eds) History and climate: memories of the future? Kluwer/Plenum, Dordrecht, New York, 295 pp

    Google Scholar 

  • Luterbacher J, Rickli R, Xoplaki E, Tinguely C, Beck C, Pfister C, Wanner H (2001) The Late Maunder Minimum (1675–1715)—a key period for studying decadal scale climatic change in Europe. Clim Change 49:441–462

    Article  Google Scholar 

  • Luterbacher J, Xoplaki E, Dietrich D, Jones PD, Davies TD, Portis D, González-Rouco JF, von Storch H, Gyalistras D, Casty C, Wanner H (2002) Extending North Atlantic Oscillation records back to 1500. Atmos Sci Lett 20:114–124

    Google Scholar 

  • Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends and extremes since 1500. Science 303:1499–1503

    Article  PubMed  Google Scholar 

  • Manley G (1974) Central England temperatures: Monthly means 1659–1973. Q J R Met Soc 100:389–405

    Article  Google Scholar 

  • Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787 plus corrigendum (Mann ME, Bradley RS, Hughes MK (2004) Nature 430:105)

    Google Scholar 

  • Mann ME, Bradley RS, Hughes MK (1999) Northern Hemisphere temperatures during the past millennium: Inferences, uncertainties and limitations. Geophys Res Lett 26:759–762

    Article  Google Scholar 

  • Mann ME, Jones PD (2003) Global surface temperature over the past two millennia. Geophys Res Lett 30. DOI 10.1029/2003GL017814

  • Matthews HD, Weaver AJ, Eby M, Meissner KJ (2003) Radiative forcing of climate by historical land cover change. Geophys Res Lett 30. DOI 10.1029/2002GL016098

  • Matthews HD, Weaver AJ, Meissner KJ, Gillett NP, Eby M (2004) Natural and anthropogenic climate change: incorporating historical land cover change, vegetation dynamics and the global carbon cycle. Climate Dynam 22:461–479

    Article  Google Scholar 

  • Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlén, W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433:613–617

    Article  PubMed  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Raihi K, Roehrl A, Rogner HH, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) IPCC special report on emissions scenarios. Cambridge University Press, Cambridge, 599 pp

  • Newhall C, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1281–1283

    Article  Google Scholar 

  • Oberhuber JM (1993) Simulation of the Atlantic circulation with a coupled sea ice-mixed layer-isopycnal general circulation model. Part I: model description. J Phys Oceanogr 22:808–829

    Article  Google Scholar 

  • Pfister C (1999) Wetternachhersage. 500 Jahre Klimavariationen und Naturkatastrophen 1496-1995. Haupt Verlag, Bern

    Google Scholar 

  • Quinn TM, Crowley TJ, Taylor FW, Henin C, Joannot P, Join Y (1998) A multicentury isotopic record from a New Caledonia coral: Interannual and decadal sea surface temperature variability in the southwest Pacific since 1657 A.D. Paleoceanography 13:412–426

    Article  Google Scholar 

  • Rahmstorf S, Ganopolsky A (1999) Long-term global warming scenarios computed with an efficient coupled climate model. Clim Change 43:353–367

    Article  Google Scholar 

  • Ramaswamy V, Schwarzkopf MD, Randel WJ (1996) Fingerprint of ozone depletion in the spatial and temporal pattern of recent lower-stratospheric cooling. Nature 382:616–618

    Article  Google Scholar 

  • Robertson A, Overpeck J, Rind D, Mosley-Thompson E, Zielinski G, Lean J, Koch D, Penner J, Tegen I, Healy R (2001) Hypothesized climate forcing time series for the last 500 years. J Geophys Res 106:14783–14803

    Article  Google Scholar 

  • Robock A (1994) Review of the year without a summer. World Climate in 1816. Clim Change 26:105–108

    Article  Google Scholar 

  • Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–220

    Article  Google Scholar 

  • Robock A, Free MP (1995) Ice cores as an index of global volcanism from 1850 to the present. J Geophys Res 100:11549–11567

    Article  Google Scholar 

  • Robock A, Free MP (1996) The volcanic record in ice cores for the past 2000 years. In: Jones PD, Bradley RS, Jouzel J (eds): Climatic variations and forcing mechanisms of the last 2000 years. Springer, Berlin Heidelberg New York, pp 533–546

    Google Scholar 

  • Robock A, Mao J (1995) The volcanic signal in surface temperature observations. J Climate 8:1086–1103

    Article  Google Scholar 

  • Roeckner E, Bengtsson L, Feichter J, Lelieveld J, Rodhe H (1999) Transient climate change simulations with a coupled atmosphere-ocean GCM including the tropospheric sulfur cycle. J Climate 12:3004–3032

    Article  Google Scholar 

  • Roelofs GJ, Lelieveld J (1995) Distribution and budget of O3 in the troposphere calculated with a chemistry-general circulation model. J Geophys Res 100:20983–20998

    Article  Google Scholar 

  • Sato M, Hansen J, McCormick M, Pollack J (1993) Stratospheric aerosol optical depth, 1880–1990. J Geophys Res 98:22987–22994

    Article  Google Scholar 

  • Schmutz C, Luterbacher J, Gyalistras D, Xoplaki E, Wanner H (2000) Can we trust proxy-based NAO index reconstructions? Geophys Res Lett 27:1135–1138

    Article  Google Scholar 

  • Self S, Gertisser R, Thordarson T, Rampino MR, Wolff JA (2004) Magma volume, volatile emissions and stratospheric aerosols from the 1815 eruption of Tambora. Geophys Res Lett 31. DOI 10.1029/2004GL020925

  • Shindell DT, Schmidt GA, Mann ME, Rind D, Waple A (2001a) Solar forcing of regional climate change during the Maunder Minimum. Science 294:2149–2152

    Article  PubMed  Google Scholar 

  • Shindell DT, Schmidt GA, Miller RL, Rind D (2001b) Northern Hemisphere winter climate response to greenhouse gas, ozone, solar and volcanic forcing. J Geophys Res 106:7193–7210

    Article  Google Scholar 

  • Solanki SK, Usoskin IG, Kromer B, Schussler M, Beer J (2004) Unusual activity of the Sun during recent decades compared to the previous 11000 years. Nature 431:1084–1087

    Article  PubMed  Google Scholar 

  • Stendel M, Schmith T, Roeckner E, Cubasch U (2000) The climate of the 21st century: Transient simulations with a coupled atmosphere-ocean general circulation model. Danish Met Inst Report 02-1, 51 pp

  • von Storch H, Zorita E, Jones JM, Dimitriev Y, González-Rouco F, Tett SFB (2004) Reconstructing past climate from noisy data. Science 306:679–682

    Article  PubMed  Google Scholar 

  • Stothers RB (1984) The great Tambora eruption in 1815 and its aftermath. Science 224:1191–1198

    Article  Google Scholar 

  • Stothers RB (2001) Major optical depth perturbations to the stratosphere from volcanic eruptions: Stellar extinction period, 1961–1978. J Geophys Res 106:2993–3004

    Article  Google Scholar 

  • Stott PA, Tett SFB, Jones GS, Allen MR, Mitchell JFB, Jenkins GJ (2000) External control of 20th century temperature variations by natural and anthropogenic forcings. Science 290:2133–2137

    Article  PubMed  Google Scholar 

  • Tibaldi S, Tosi E, Navarra A, Pedulli E (1994) Northern and Southern Hemisphere seasonal variability of blocking frequency and predictability. Mon Wea Rev 122:1971–2003

    Article  Google Scholar 

  • Vinther BM, Johnsen SJ, Andersen KK, Clausen HB, Hansen AW, 2003: NAO signal recorded in the stable isotopes of Greenland ice cores. Geophys Res Lett 30. DOI 10.1029/2002GL016193

  • Xoplaki E, Maheras P, Luterbacher J (2001) Variability of climate in meridional Balkans during the periods 1675–1715 and 1780–1830 and its impact on human life. Clim Change 48:581–614

    Article  Google Scholar 

  • Zhao M, Pitman A, Chase T (2001) The impact of land cover change on the atmospheric circulation. Climate Dynam 17:467–477

    Article  Google Scholar 

  • Zorita E, von Storch H, Gonzalez-Rouco FJ, Cubasch U, Luterbacher J, Legutke S, Fischer-Bruns I, Schlese U (2004) Simulation of the climate of the last five centuries. Met Z 13:271–289

    Article  Google Scholar 

Download references

Acknowledgements

The empirical reconstruction of European temperatures was provided by Jürg Luterbacher. The historical land-use change data were obtained through the National Institute for Public Health and the Environment (RIVM) of The Netherlands. We would like to thank Caspar M. Ammann, Michael E. Mann, Eduardo Zorita and Hans von Storch for comments and suggestions, Torben Schmith for help with processing the OPYC data and two anonymous reviewers for valuable comments that helped to improve the manuscript. This work was funded by the EU 5th Framework project GLIMPSE (Global implications of Arctic climate processes and feedbacks) under contract EVK2-CT-2002-00164.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Stendel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stendel, M., Mogensen, I.A. & Christensen, J.H. Influence of various forcings on global climate in historical times using a coupled atmosphere–ocean general circulation model. Clim Dyn 26, 1–15 (2006). https://doi.org/10.1007/s00382-005-0041-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-005-0041-4

Keywords

Navigation