Skip to main content

Advertisement

Log in

Biopsy of diffuse midline glioma is safe and impacts targeted therapy: a systematic review and meta-analysis

  • Review
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

To quantify the safety and utility of biopsy of pediatric diffuse midline glioma (DMG).

Methods

This study was conducted in accordance with PRISMA guidelines. PubMed, Embase, Scopus, and Web of Science were queried for relevant articles from inception until June 2023. Two reviewers identified all articles that included diagnostic yield, morbidity, and mortality rates for pediatric DMG patients. Studies that did not present original data or were not in English or peer-reviewed were excluded. Meta-analysis was conducted in R using Freeman-Tukey or logit transformation and DerSimonian-Laird random-effects models. The risk of bias was assessed using the Newcastle–Ottawa Scale. A protocol for this review was not registered.

Results

We identified 381 patients from ten studies that met all criteria. DMG biopsy is safe overall (0% mortality, 95% CI: 0–0.6%; 11.0% morbidity, 95% CI: 4.8–18.9%) and has a high diagnostic yield (99.9%, 95% CI: 98.5–100%). The use of stereotactic biopsy is a significant moderator of morbidity (p = 0.0238). Molecular targets can be identified in approximately 53.4% of tumors (95% CI: 37.0–69.0%), although targeted therapies are only delivered in about 33.5% of all cases (95% CI: 24.4–44.1%). Heterogeneity was high for morbidity and identification of targets. The risk of bias was low for all studies.

Conclusion

We conducted the first meta-analysis of DMG biopsy to show that it is safe, effective, and able to identify relevant molecular targets that impact targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The extracted data has been included with the supplementary materials.

References

  1. Hargrave D, Bartels U, Bouffet E (2006) Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncol 7:241–248. https://doi.org/10.1016/S1470-2045(06)70615-5

    Article  PubMed  Google Scholar 

  2. Albright AL, Packer RJ, Zimmerman R et al (1993) Magnetic resonance scans should replace biopsies for the diagnosis of diffuse brain stem gliomas: a report from the Children’s Cancer Group. Neurosurgery 33:1026–9; discussion 1029–30. https://doi.org/10.1227/00006123-199312000-00010

  3. Puget S, Beccaria K, Blauwblomme T et al (2015) Biopsy in a series of 130 pediatric diffuse intrinsic Pontine gliomas. Childs Nerv Syst 31:1773–1780. https://doi.org/10.1007/s00381-015-2832-1

    Article  PubMed  Google Scholar 

  4. Mueller T, Laternser S, Guerreiro Stücklin AS et al (2023) Real-time drug testing of paediatric diffuse midline glioma to support clinical decision making: the Zurich DIPG/DMG centre experience. Eur J Cancer 178:171–179. https://doi.org/10.1016/j.ejca.2022.10.014

    Article  CAS  PubMed  Google Scholar 

  5. Pfaff E, El Damaty A, Balasubramanian GP et al (2019) Brainstem biopsy in pediatric diffuse intrinsic pontine glioma in the era of precision medicine: the INFORM study experience. Eur J Cancer 114:27–35. https://doi.org/10.1016/j.ejca.2019.03.019

    Article  PubMed  Google Scholar 

  6. Wang M, Zhang Y, Shi W et al (2022) Frameless robot-assisted stereotactic biopsy: an effective and minimally invasive technique for pediatric diffuse intrinsic pontine gliomas. J Neurooncol 160:107–114. https://doi.org/10.1007/s11060-022-04122-4

    Article  PubMed  Google Scholar 

  7. Hamisch C, Kickingereder P, Fischer M et al (2017) Update on the diagnostic value and safety of stereotactic biopsy for pediatric brainstem tumors: a systematic review and meta-analysis of 735 cases. J Neurosurg Pediatr 20:261–268. https://doi.org/10.3171/2017.2.PEDS1665

    Article  PubMed  Google Scholar 

  8. Tejada S, Aquilina K, Goodden J et al (2020) Biopsy in diffuse pontine gliomas: expert neurosurgeon opinion-a survey from the SIOPE brain tumor group. Childs Nerv Syst 36:705–711. https://doi.org/10.1007/s00381-020-04523-8

    Article  PubMed  Google Scholar 

  9. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lu VM, Koester SW, Di L et al (2023) Frameless robotic-assisted biopsy of pediatric brainstem lesions: a systematic review and meta-analysis of efficacy and safety. World Neurosurg 169:87-93.e1. https://doi.org/10.1016/j.wneu.2022.10.071

    Article  PubMed  Google Scholar 

  11. Guyatt GH, Oxman AD, Vist GE et al (2008) GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336:924–926. https://doi.org/10.1136/bmj.39489.470347.AD

    Article  PubMed  PubMed Central  Google Scholar 

  12. Higgins J, Green S (2008) Cochrane handbook for systematic reviews of interventions: Cochrane book series. Wiley-Blackwell, Hoboken, NJ

  13. Wang ZJ, Rao L, Bhambhani K et al (2015) Diffuse intrinsic pontine glioma biopsy: a single institution experience. Pediatr Blood Cancer 62:163–165. https://doi.org/10.1002/pbc.25224

    Article  PubMed  Google Scholar 

  14. Porkholm M, Raunio A, Vainionpää R et al (2018) Molecular alterations in pediatric brainstem gliomas. Pediatr Blood Cancer 65. https://doi.org/10.1002/pbc.26751

  15. Gupta N, Goumnerova LC, Manley P et al (2018) Prospective feasibility and safety assessment of surgical biopsy for patients with newly diagnosed diffuse intrinsic pontine glioma. Neuro Oncol 20:1547–1555. https://doi.org/10.1093/neuonc/noy070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Joud A, Stella I, Klein O (2020) Diffuse infiltrative pontine glioma biopsy in children with neuronavigation, frameless procedure: a single center experience of 10 cases. Neurochirurgie 66:345–348. https://doi.org/10.1016/j.neuchi.2020.05.007

    Article  CAS  PubMed  Google Scholar 

  17. Del Baldo G, Carai A, Abbas R et al (2022) Targeted therapy for pediatric diffuse intrinsic pontine glioma: a single-center experience. Ther Adv Med Oncol 14:17588359221113692. https://doi.org/10.1177/17588359221113693

    Article  CAS  Google Scholar 

  18. Früh A, Schaumann A, Cohrs G et al (2023) Biopsies of caudal brainstem tumors in pediatric patients-a single-center retrospective case series. World Neurosurg. https://doi.org/10.1016/j.wneu.2023.05.108

    Article  PubMed  Google Scholar 

  19. Buczkowicz P, Bartels U, Bouffet E et al (2014) Histopathological spectrum of paediatric diffuse intrinsic pontine glioma: diagnostic and therapeutic implications. Acta Neuropathol 128:573–581. https://doi.org/10.1007/s00401-014-1319-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sufit A, Donson AM, Birks DK et al (2012) Diffuse intrinsic pontine tumors: a study of primitive neuroectodermal tumors versus the more common diffuse intrinsic pontine gliomas. J Neurosurg Pediatr 10:81–88. https://doi.org/10.3171/2012.3.PEDS11316

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hankinson TC, Campagna EJ, Foreman NK, Handler MH (2011) Interpretation of magnetic resonance images in diffuse intrinsic pontine glioma: a survey of pediatric neurosurgeons. J Neurosurg Pediatr 8:97–102. https://doi.org/10.3171/2011.4.PEDS1180

    Article  PubMed  Google Scholar 

  22. Williams JR, Young CC, Vitanza NA et al (2020) Progress in diffuse intrinsic pontine glioma: advocating for stereotactic biopsy in the standard of care. Neurosurg Focus 48:E4. https://doi.org/10.3171/2019.9.FOCUS19745

    Article  PubMed  Google Scholar 

  23. Iannó MF, Biassoni V, Schiavello E et al (2022) A microRNA prognostic signature in patients with diffuse intrinsic pontine gliomas through non-invasive liquid biopsy. Cancers (Basel) 14:4307. https://doi.org/10.3390/cancers14174307

    Article  CAS  PubMed  Google Scholar 

  24. Cantor E, Wierzbicki K, Tarapore RS et al (2022) Serial H3K27M cell-free tumor DNA (cf-tDNA) tracking predicts ONC201 treatment response and progression in diffuse midline glioma. Neuro Oncol 24:1366–1374. https://doi.org/10.1093/neuonc/noac030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Azad TD, Jin MC, Bernhardt LJ, Bettegowda C (2020) Liquid biopsy for pediatric diffuse midline glioma: a review of circulating tumor DNA and cerebrospinal fluid tumor DNA. Neurosurg Focus 48:E9. https://doi.org/10.3171/2019.9.FOCUS19699

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lu VM, Power EA, Zhang L, Daniels DJ (2019) Liquid biopsy for diffuse intrinsic pontine glioma: an update. J Neurosurg Pediatr 24:593–600. https://doi.org/10.3171/2019.6.peds19259

    Article  Google Scholar 

  27. Wu G, Broniscer A, McEachron TA et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44:251–253. https://doi.org/10.1038/ng.1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gardner SL, Tarapore RS, Allen J et al (2022) Phase I dose escalation and expansion trial of single agent ONC201 in pediatric diffuse midline gliomas following radiotherapy. Neurooncol Adv 4:vdac143. https://doi.org/10.1093/noajnl/vdac143

  29. Majzner RG, Ramakrishna S, Yeom KW et al (2022) GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature 603:934–941. https://doi.org/10.1038/s41586-022-04489-4

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mount CW, Majzner RG, Sundaresh S et al (2018) Potent antitumor efficacy of anti-GD2 CAR T cells in H3–K27M+ diffuse midline gliomas. Nat Med 24:572–579. https://doi.org/10.1038/s41591-018-0006-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gojo J, Pavelka Z, Zapletalova D et al (2019) Personalized treatment of H3K27M-mutant pediatric diffuse gliomas provides improved therapeutic opportunities. Front Oncol 9:1436. https://doi.org/10.3389/fonc.2019.01436

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.A. conceived the study. A.Y.F. and P.H. prepared the search query. A.Y.F., Y.Y., and J.K. conducted the review process. A.Y.F. and A.S. conducted the risk of bias assessment. A.Y.F. conducted all analyses, prepared all figures and tables, and wrote the main manuscript. C.A.M. and A.A. critically revised the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Allen Y. Fu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 191 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, A.Y., Kavia, J., Yadava, Y. et al. Biopsy of diffuse midline glioma is safe and impacts targeted therapy: a systematic review and meta-analysis. Childs Nerv Syst 40, 625–634 (2024). https://doi.org/10.1007/s00381-023-06208-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-023-06208-4

Keywords

Navigation