Skip to main content

Advertisement

Log in

Fetal neurosurgery

  • Review
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Among fetal surgical procedures, neurosurgery stands out due to the number of cases and the possibility of developing new procedures that can be performed in the fetal period. To perform fetal neurosurgical procedures, there is a need for specialized centers that have experts in the diagnosis of fetal pathologies and a highly complex obstetrics service with specialized maternal–fetal teams associated with a pediatric neurosurgery center with expertise in the diverse pathologies of the fetus and the central nervous system that offers multidisciplinary follow-up during postnatal life. Services that do not have these characteristics should refer their patients to these centers to obtain better treatment results. It is essential that the fetal neurosurgical procedure be performed by a pediatric neurosurgeon with extensive experience, as he will be responsible for monitoring these patients in the postnatal period and for several years. The objective of this manuscript is to demonstrate the diagnostic and treatment possibilities, in the fetal period, of some neurosurgical diseases such as hydrocephalus, tumors, occipital encephalocele, and myelomeningocele.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Data availability

None.

Code availability

No codes available.

References

  1. Prayer D, Malinger G, De Catte L et al (2023) ISUOG practice guidelines (updated): performance of fetal magnetic resonance imaging. Ultrasound Obstet Gynecol 61:278–287. https://doi.org/10.1002/UOG.26129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Glenn OA, Barkovich AJ (2006) Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis, Part 1. AJNR Am J Neuroradiol 27:1604

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Glenn OA, Barkovich J (2006) Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis: Part 2. AJNR Am J Neuroradiol 27:1807

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Dremmen MHG, Ellen Grant P, Huisman TAGM (2016) Fetal MRI of the brain and spine. Diseases of the Brain, Head and Neck, Spine 2016–2019: Diagnostic Imaging 205–214. https://doi.org/10.1007/978-3-319-30081-8_23/COVER

  5. Levine D, Barnes PD, Madsen JR et al (1997) Fetal central nervous system anomalies: MR imaging augments sonographic diagnosis. Radiology 204:635–642. https://doi.org/10.1148/RADIOLOGY.204.3.9280237

    Article  CAS  PubMed  Google Scholar 

  6. Breysem L, Bosmans H, Dymarkowski S et al (2003) The value of fast MR imaging as an adjunct to ultrasound in prenatal diagnosis. Eur Radiol 13:1538–1548. https://doi.org/10.1007/S00330-002-1811-6

    Article  CAS  PubMed  Google Scholar 

  7. Frates MC, Kumar AJ, Benson CB et al (2004) Fetal anomalies: comparison of MR imaging and US for diagnosis. Radiology 232:398–404. https://doi.org/10.1148/RADIOL.2322030504

    Article  PubMed  Google Scholar 

  8. Gonçalves LF, Lee W, Mody S et al (2016) Diagnostic accuracy of ultrasonography and magnetic resonance imaging for the detection of fetal anomalies: a blinded case-control study. Ultrasound Obstet Gynecol 48:185–192. https://doi.org/10.1002/UOG.15774

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gholipour A, Estroff JA, Barnewolt CE et al (2014) Fetal MRI: a technical update with educational aspirations. Concepts Magn Reson Part A Bridg Educ Res 43:237–266. https://doi.org/10.1002/CMR.A.21321

    Article  CAS  PubMed  Google Scholar 

  10. Acr PRACTICE PARAMETER 1 Pregnant or potentially pregnant patients. https://cdn.who.int/media/docs/default-source/hq-tuberculosis/global-task-force-on-tb-impact-measurement/meetings/2009-01/7_imaging_pregnant_women_acr.pdf?sfvrsn=59aaa180_5

  11. Barzilay E, Bar-Yosef O, Dorembus S et al (2017) Fetal brain anomalies associated with ventriculomegaly or asymmetry: an MRI-based study. AJNR Am J Neuroradiol 38:371. https://doi.org/10.3174/AJNR.A5009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Griffiths PD, Reeves MJ, Morris JE et al (2010) A prospective study of fetuses with isolated ventriculomegaly investigated by antenatal sonography and in utero MR imaging. AJNR Am J Neuroradiol 31:106. https://doi.org/10.3174/AJNR.A1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gupta JK, Bryce FC, Lilford RJ (1994) Management of apparently isolated fetal ventriculomegaly. Obstet Gynecol Surv 49:716–721. https://doi.org/10.1097/00006254-199410000-00027

    Article  CAS  PubMed  Google Scholar 

  14. Sira L, Kozyrev D, Bashat D et al (2021) Fetal ventriculomegaly and hydrocephalus - what shouldn’t be missed on imaging? Neurol India 69:S294–S300. https://doi.org/10.4103/0028-3886.332286

    Article  Google Scholar 

  15. Cater SW, Boyd BK, Ghate SV (2020) Abnormalities of the fetal central nervous system: prenatal US diagnosis with postnatal correlation. Radiographics 40:1458–1472. https://doi.org/10.1148/RG.2020200034

    Article  PubMed  Google Scholar 

  16. Manor C, Rangasami R, Suresh I, Suresh S (2020) Magnetic resonance imaging findings in fetal corpus callosal developmental abnormalities: a pictorial essay. J Pediatr Neurosci 15:352–357. https://doi.org/10.4103/JPN.JPN_174_19

    Article  PubMed  Google Scholar 

  17. Boseman T, Orman G, Boltshauser E et al (2015) Congenital abnormalities of the posterior fossa. Radiographics 35:200–220. https://doi.org/10.1148/RG.351140038

    Article  Google Scholar 

  18. Mahalingam HV, Rangasami R, Seshadri S, Suresh I (2021) Imaging spectrum of posterior fossa anomalies on foetal magnetic resonance imaging with an algorithmic approach to diagnosis. Pol J Radiol 86:e183–e194. https://doi.org/10.5114/PJR.2021.105014

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nagaraj UD, Kline-Fath BM, Calvo-Garcia MA et al (2020) Fetal and postnatal MRI findings of Blake pouch remnant causing obstructive hydrocephalus. Radiol Case Rep 15:2535–2539. https://doi.org/10.1016/J.RADCR.2020.09.039

    Article  PubMed  PubMed Central  Google Scholar 

  20. Limperopoulos C, Robertson RL, Estroff JA et al (2006) Diagnosis of inferior vermian hypoplasia by fetal magnetic resonance imaging: potential pitfalls and neurodevelopmental outcome. Am J Obstet Gynecol 194:1070–1076. https://doi.org/10.1016/J.AJOG.2005.10.191

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lerman-Sagie T, Pogledic I, Leibovitz Z, Malinger G (2021) A practical approach to prenatal diagnosis of malformations of cortical development. Eur J Paediatr Neurol 34:50–61. https://doi.org/10.1016/J.EJPN.2021.08.001

    Article  PubMed  Google Scholar 

  22. Aboughalia H, Noda S, Chapman T et al (2021) Multimodality imaging evaluation of fetal spine anomalies with postnatal correlation. Radiographics 41:2176–2192. https://doi.org/10.1148/RG.2021210066

    Article  PubMed  Google Scholar 

  23. Lerman-Sagie T, Leibovitz Z (2016) Malformations of cortical development: from postnatal to fetal imaging. Can J Neurol Sci 43:611–618. https://doi.org/10.1017/CJN.2016.271

    Article  PubMed  Google Scholar 

  24. Merhar SL, Kline-Fath BM, Meinzen-Derr J et al (2013) Fetal and postnatal brain MRI in premature infants with twin-twin transfusion syndrome. J Perinatol 33:112–118. https://doi.org/10.1038/JP.2012.87

    Article  CAS  PubMed  Google Scholar 

  25. Kline-Fath BM, Calvo-Garcia MA, O’Hara SM et al (2007) Twin-twin transfusion syndrome: cerebral ischemia is not the only fetal MR imaging finding. Pediatr Radiol 37:47–56. https://doi.org/10.1007/S00247-006-0337-5

    Article  PubMed  Google Scholar 

  26. Segev M, Djurabayev B, Hadi E et al (2022) Third trimester structural and diffusion brain imaging after single intrauterine fetal death in monochorionic twins: MRI-based cohort study. AJNR Am J Neuroradiol 43:620–626. https://doi.org/10.3174/AJNR.A7475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guimiot F, Garel C, Fallet-Bianco C et al (2008) Contribution of diffusion-weighted imaging in the evaluation of diffuse white matter ischemic lesions in fetuses: correlations with fetopathologic findings. Am J Neuroradiol 29:110–115. https://doi.org/10.3174/ajnr.A0754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Trapp B, de Freddi T, AL, Hans M de OM, et al (2021) A practical approach to diagnosis of spinal dysraphism. Radiographics 41:559–575. https://doi.org/10.1148/RG.2021200103

    Article  PubMed  Google Scholar 

  29. Chiu TH, Haliza G, Lin YH et al (2014) A retrospective study on the course and outcome of fetal ventriculomegaly. Taiwan J Obstet Gynecol 53:170–177. https://doi.org/10.1016/J.TJOG.2014.04.008

    Article  PubMed  Google Scholar 

  30. Stein SC, Feldman JG, Apfel S et al (1981) The epidemiology of congenital hydrocephalus: a study in Brooklyn, N.Y. 1968–1976. Childs Brain 8:253–262. https://doi.org/10.1159/000119988

    Article  CAS  PubMed  Google Scholar 

  31. Cavalheiro S, Moron AF, Zymberg ST, Dastoli P (2003) Fetal hydrocephalus–prenatal treatment. Childs Nerv Syst 19:561–573. https://doi.org/10.1007/S00381-003-0772-7

    Article  PubMed  Google Scholar 

  32. Cavalheiro S, da Costa MDS, Nicácio JM et al (2020) Fetal surgery for occipital encephalocele. J Neurosurg Pediatr 26:605–612. https://doi.org/10.3171/2020.3.PEDS19613

    Article  PubMed  Google Scholar 

  33. Cornejo P, Feygin T, Vaughn J et al (2020) Imaging of fetal brain tumors. Pediatr Radiol 50:1959–1973. https://doi.org/10.1007/S00247-020-04777-Z

    Article  PubMed  Google Scholar 

  34. Isaacs H (2009) Fetal brain tumors: a review of 154 cases. Am J Perinatol 26:453–466. https://doi.org/10.1055/S-0029-1214245

    Article  PubMed  Google Scholar 

  35. Cavalheiro S, da Costa MDS, Richtmann R (2021) Everolimus as a possible prenatal treatment of in utero diagnosed subependymal lesions in tuberous sclerosis complex: a case report. Childs Nerv Syst 37:3897–3899. https://doi.org/10.1007/S00381-021-05218-4

    Article  PubMed  Google Scholar 

  36. Cavalheiro S, Do Amaral Campos HG, Da Costa MDS (2016) A case of giant fetal intracranial capillary hemangioma cured with propranolol. J Neurosurg Pediatr 17:711–716. https://doi.org/10.3171/2015.11.PEDS15469

    Article  PubMed  Google Scholar 

  37. Shekdar KV, Schwartz ES (2017) Brain tumors in the neonate. Neuroimaging Clin N Am 27:69–83. https://doi.org/10.1016/J.NIC.2016.09.001

    Article  PubMed  Google Scholar 

  38. Fahmideh MA, Scheurer ME (2021) Pediatric brain tumors: descriptive epidemiology, risk factors, and future directions. Cancer Epidemiol Biomarkers Prev 30:813–821. https://doi.org/10.1158/1055-9965.EPI-20-1443

    Article  CAS  Google Scholar 

  39. Isaacs H (2002) I. Perinatal brain tumors: a review of 250 cases. Pediatr Neurol 27:249–261. https://doi.org/10.1016/S0887-8994(02)00472-1

    Article  PubMed  Google Scholar 

  40. Paladini D, Malinger G, Monteagudo A et al (2007) Sonographic examination of the fetal central nervous system: guidelines for performing the ‘basic examination’ and the ‘fetal neurosonogram.’ Ultrasound Obstet Gynecol 29:109–116. https://doi.org/10.1002/UOG.3909

    Article  Google Scholar 

  41. Milani HJF, de Sá Barreto EQ, Araujo Júnior E et al (2019) Ultrasonographic evaluation of the fetal central nervous system: review of guidelines. Radiol Bras 52:176–181. https://doi.org/10.1590/0100-3984.2018.0056

    Article  PubMed  PubMed Central  Google Scholar 

  42. Coleman BG, Langer JE, Horii SC (2015) The diagnostic features of spina bifida: the role of ultrasound. Fetal Diagn Ther 37:179–196. https://doi.org/10.1159/000364806

    Article  PubMed  Google Scholar 

  43. de Sá Barreto EQ, Moron AF, Milani HJF et al (2015) The occipitum-dens line: the purpose of a new ultrasonographic landmark in the evaluation of the relationship between the foetal posterior fossa structures and foramen magnum. Childs Nerv Syst 31:729–733. https://doi.org/10.1007/S00381-015-2621-X

    Article  PubMed  Google Scholar 

  44. Salomon LJ, Alfirevic Z, Berghella V et al (2011) Practice guidelines for performance of the routine mid-trimester fetal ultrasound scan. Ultrasound Obstet Gynecol 37:116–126. https://doi.org/10.1002/UOG.8831

    Article  CAS  PubMed  Google Scholar 

  45. Malinger G, Paladini D, Haratz KK et al (2020) ISUOG practice guidelines (updated): sonographic examination of the fetal central nervous system. Part 1: performance of screening examination and indications for targeted neurosonography. Ultrasound Obstet Gynecol 56:476–484. https://doi.org/10.1002/UOG.22145

    Article  CAS  PubMed  Google Scholar 

  46. Neto CN, de Souza ASR, de Moraes Filho OB, Noronha AMB (2009) Validação do diagnóstico ultrassonográfico de anomalias fetais em centro de referência. Rev Assoc Med Bras 55:541–546. https://doi.org/10.1590/S0104-42302009000500016

    Article  Google Scholar 

  47. Kollias SS, Goldstein RB, Cogen PH, Filly RA (1992) Prenatally detected myelomeningoceles: sonographic accuracy in estimation of the spinal level. Radiology 185:109–112. https://doi.org/10.1148/RADIOLOGY.185.1.1523291

    Article  CAS  PubMed  Google Scholar 

  48. Nicolaides KH, Gabbe SG, Campbell S, Guidetti R (1986) Ultrasound screening for spina bifida: cranial and cerebellar signs. Lancet 2:72–74. https://doi.org/10.1016/S0140-6736(86)91610-7

    Article  CAS  PubMed  Google Scholar 

  49. Campbell J, Gilbert WM, Nicolaides KH, Campbell S (1987) Ultrasound screening for spina bifida: cranial and cerebellar signs in a high-risk population - PubMed. Obstet Gynecol 70:247–250

    CAS  PubMed  Google Scholar 

  50. Nyberg DA, Mack LA, Hirsch J, Mahony BS (1988) Abnormalities of fetal cranial contour in sonographic detection of spina bifida: evaluation of the “lemon” sign. Radiology 167:387–392. https://doi.org/10.1148/RADIOLOGY.167.2.3282259

    Article  CAS  PubMed  Google Scholar 

  51. Cardoza JD, Goldstein RB, Filly RA (1988) Exclusion of fetal ventriculomegaly with a single measurement: the width of the lateral ventricular atrium. Radiology 169:711–714. https://doi.org/10.1148/RADIOLOGY.169.3.3055034

    Article  CAS  PubMed  Google Scholar 

  52. Van den Hof MC, Nicolaides KH, Campbell J, Campbell S (1990) Evaluation of the lemon and banana signs in one hundred thirty fetuses with open spina bifida. Am J Obstet Gynecol 162:322–327. https://doi.org/10.1016/0002-9378(90)90378-K

    Article  PubMed  Google Scholar 

  53. Robbin ML, Filly RA, Goldstein RB (1994) The normal location of the fetal conus medullaris. J Ultrasound Med 13:541–546. https://doi.org/10.7863/JUM.1994.13.7.541

    Article  CAS  PubMed  Google Scholar 

  54. Tubbs RS, Oakes WJ (2004) Can the conus medullaris in normal position be tethered? Neurol Res 26:727–731. https://doi.org/10.1179/016164104225017910

    Article  PubMed  Google Scholar 

  55. Hoopmann M, Sonek J, Schramm T et al (2012) Position of the conus medullaris in fetuses with skeletal dysplasia. Prenat Diagn 32:1313–1317. https://doi.org/10.1002/PD.4005

    Article  PubMed  Google Scholar 

  56. Ba Z, Zhao W, Wu D et al (2012) MRI study of the position of the conus medullaris in patients with lumbar spinal stenosis. Orthopedics. https://doi.org/10.3928/01477447-20120525-31

    Article  PubMed  Google Scholar 

  57. Wilson DA, Prince JR (1989) John Caffey award. MR imaging determination of the location of the normal conus medullaris throughout childhood. AJR Am J Roentgenol 152:1029–1032. https://doi.org/10.2214/AJR.152.5.1029

    Article  CAS  PubMed  Google Scholar 

  58. Zalel Y, Lehavi O, Aizenstein O, Achiron R (2006) Development of the fetal spinal cord: time of ascendance of the normal conus medullaris as detected by sonography. J Ultrasound Med 25:1397–1401. https://doi.org/10.7863/JUM.2006.25.11.1397

    Article  PubMed  Google Scholar 

  59. Saifuddin A, Burnett SJD, White J (1998) The variation of position of the conus medullaris in an adult population. A magnetic resonance imaging study. Spine (Phila Pa 1976) 23:1452–1456. https://doi.org/10.1097/00007632-199807010-00005

    Article  CAS  PubMed  Google Scholar 

  60. Shekdar K (2011) Posterior fossa malformations. Semin Ultrasound CT MR 32:228–241. https://doi.org/10.1053/J.SULT.2011.02.003

    Article  PubMed  Google Scholar 

  61. Vatansever D, Kyriakopoulou V, Allsop JM et al (2013) Multidimensional analysis of fetal posterior fossa in health and disease. Cerebellum 12:632–644. https://doi.org/10.1007/S12311-013-0470-2

    Article  PubMed  Google Scholar 

  62. Monteagudo A, Timor-Tritsch IE (2009) Normal sonographic development of the central nervous system from the second trimester onwards using 2D, 3D and transvaginal sonography. Prenat Diagn 29:326–339. https://doi.org/10.1002/PD.2146

    Article  PubMed  Google Scholar 

  63. de Barreto EQ, S, Cavalheiro S, Milani HJF, et al (2018) Cerebellar herniation demonstrated by the occipitum-dens line: ultrasonography assessment of normal fetuses, fetuses with myelomeningocele, and fetuses that underwent antenatal myelomeningocele surgery. Prenat Diagn 38:280–285. https://doi.org/10.1002/PD.5229

    Article  PubMed  Google Scholar 

  64. Milani HJF, de Sá Barreto EQ, Araujo Júnior E et al (2022) Measurement of the area and circumference of the leg: preliminary results of a new method for estimating leg muscle trophism in fetuses with open lumbosacral spina bifida. J Ultrasound Med 41:377–388. https://doi.org/10.1002/JUM.15715

    Article  PubMed  Google Scholar 

  65. Hisaba WJ, Cavalheiro S, Almodim CG et al (2012) Intrauterine myelomeningocele repair postnatal results and follow-up at 3.5 years of age–initial experience from a single reference service in Brazil. Childs Nerv Syst 28:461–467. https://doi.org/10.1007/S00381-011-1662-Z

    Article  PubMed  Google Scholar 

  66. Moron A, Barbosa M, Milani H et al (2015) Short-term surgical and clinical outcomes with a novel method for open fetal surgery of myelomeningocele. https://doi.org/10.1016/j.ajog.2014.10.977

  67. Adzick NS, Thom EA, Spong CY et al (2011) A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med 364:993–1004. https://doi.org/10.1056/NEJMOA1014379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Moron AF, Barbosa MM, Milani HJF et al (2018) Perinatal outcomes after open fetal surgery for myelomeningocele repair: a retrospective cohort study. BJOG 125:1280–1286. https://doi.org/10.1111/1471-0528.15312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Moldenhauer JS, Soni S, Rintoul NE, Spinner SS, Khalek N, Martinez-Poyer J, Flake AW, Hedrick HL, Peranteau WH, Rendon N, Koh J, Howell LJ, Heuer GG, Sutton LN, Johnson MP, Adzick NS (2015) Fetal myelomeningocele repair: the post-MOMS experience at the Children’s Hospital of Philadelphia. Fetal Diagn Ther 37:235–240. https://doi.org/10.1159/000365353

    Article  PubMed  Google Scholar 

  70. Peralta CFA, Botelho RD, Romano ER, Imada V, Lamis F, Júnior RR, Nani F, Stoeber GH, De Salles AAF (2020) Fetal open spinal dysraphism repair through a minihysterotomy: influence of gestational age at surgery on the perinatal outcomes and postnatal shunt rates. Prenat Diagn 40:689–697. https://doi.org/10.1002/pd.5675

    Article  PubMed  Google Scholar 

  71. Adzick NS, Sutton LN, Crombleholme TM, Flake AW (1998) Successful fetal surgery for spina bifida. Lancet 352:1675–1676

    Article  CAS  PubMed  Google Scholar 

  72. Belfort MA, Whitehead WE, Shamshirsaz AA et al (2017) Fetoscopic open neural tube defect repair: development and refinement of a two-port, carbon dioxide insufflation technique. Obstet Gynecol 129:734–743. https://doi.org/10.1097/AOG.0000000000001941

    Article  CAS  PubMed  Google Scholar 

  73. Cavalheiro S, da Costa MDS, Moron AF, Leonard J (2017) Comparison of prenatal and postnatal management of patients with myelomeningocele. Neurosurg Clin N Am 28:439–448. https://doi.org/10.1016/J.NEC.2017.02.005

    Article  PubMed  Google Scholar 

  74. Lapa Pedreira DA, Acacio GL, Gonçalves RT et al (2018) Percutaneous fetoscopic closure of large open spina bifida using a bilaminar skin substitute. Ultrasound Obstet Gynecol 52:458–466. https://doi.org/10.1002/UOG.19001

    Article  CAS  PubMed  Google Scholar 

  75. Sanz Cortes M, Chmait RH, Lapa DA, Belfort MA, Carreras E, Miller JL, Brawura Biskupski Samaha R, Sepulveda Gonzalez G, Gielchinsky Y, Yamamoto M, Persico N, Santorum M, Otaño L, Nicolaou E, Yinon Y, Faig-Leite F, Brandt R, Whitehead W, Maiz N, Baschat A, Kosinski P, Nieto-Sanjuanero A, Chu J, Kershenovich A, Nicolaides KH (2021) Experience of 300 cases of prenatal fetoscopic open spina bifida repair: report of the International Fetoscopic Neural Tube Defect Repair Consortium. Am J Obstet Gynecol 225(6):678.e1–678.e11. https://doi.org/10.1016/j.ajog.2021.05.044. Epub 2021 Jun 3. PMID: 34089698

  76. da Costa MDS, Cavalheiro S, Camargo NC et al (2020) Fetal myelomeningocele repair: how many techniques are necessary? World Neurosurg 141:511–513. https://doi.org/10.1016/J.WNEU.2020.07.003

    Article  PubMed  Google Scholar 

  77. Kohl T (2014) Percutaneous minimally invasive fetoscopic surgery for spina bifida aperta. Part I: surgical technique and perioperative outcome. Ultrasound Obstet Gynecol 44:515–524. https://doi.org/10.1002/UOG.13430

    Article  CAS  PubMed  Google Scholar 

  78. Farmer DL, Von Koch CS, Peacock WJ et al (2003) In utero repair of myelomeningocele: experimental pathophysiology, initial clinical experience, and outcomes. Arch Surg 138:872–878. https://doi.org/10.1001/ARCHSURG.138.8.872

    Article  PubMed  Google Scholar 

  79. Corral E, Sepulveda W, Ravera F et al (2020) Use of plastic wound retractor at hysterotomy site in prenatal repair of myelomeningocele: a new technique. J Matern Fetal Neonatal Med 33:3010–3015. https://doi.org/10.1080/14767058.2019.1566902

    Article  CAS  PubMed  Google Scholar 

  80. Botelho RD, Imada V, Rodrigues Da Costa KJ et al (2017) Fetal myelomeningocele repair through a mini-hysterotomy. Fetal Diagn Ther 42:28–34. https://doi.org/10.1159/000449382

    Article  PubMed  Google Scholar 

  81. Zaretsky MV, Liechty KW, Galan HL et al (2018) Modified hysterotomy closure technique for open fetal surgery. Fetal Diagn Ther 44:105–111. https://doi.org/10.1159/000479683

    Article  PubMed  Google Scholar 

  82. Etchegaray A, Palma F, De Rosa R et al (2018) Fetal surgery for myelomeningocele: obstetric evolution and short-term perinatal outcomes of a cohort of 21 cases. Surg Neurol Int 9:S73–S84. https://doi.org/10.4103/SNI.SNI_236_18

    Article  PubMed  PubMed Central  Google Scholar 

  83. Pedreira DAL, Zanon N, Nishikuni K et al (2016) Endoscopic surgery for the antenatal treatment of myelomeningocele: the CECAM trial. Am J Obstet Gynecol 214:111.e1-111.e11. https://doi.org/10.1016/J.AJOG.2015.09.065

    Article  PubMed  Google Scholar 

  84. Dugas A, Larghero J, Zérah M et al (2020) Cell therapy for prenatal repair of myelomeningocele: a systematic review. Curr Res Transl Med 68:183–189. https://doi.org/10.1016/J.RETRAM.2020.04.004

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sergio Cavalheiro: supervision, writing, reviewing, and editing. Marcos Devanir Silva da Costa: writing, data acquisition, editing, and reviewing. Mauricio Mendes Barbosa: writing, editing, and reviewing. Italo Capraro Suriano: editing and reviewing. Ana Carolina Ottaiano: writing, editing, and reviewing. Tomás de Andrade Lourenção Freddi: writing, editing, and reviewing. Nelson Paes Fortes Diniz Ferreira: writing, editing, and reviewing. Cid Ura Kusano: writing, editing and reviewing. Patricia Alessandra Dastoli: reviewing and editing. Jardel Mendonça Nicácio: writing, reviewing, and editing. Stéphanno Gomes Pereira Sarmento: writing, reviewing, and editing. Antonio Fernandes Moron: writing, reviewing, and editing.

Corresponding author

Correspondence to Marcos Devanir Silva da Costa.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavalheiro, S., da Costa, M.D.S., Barbosa, M.M. et al. Fetal neurosurgery. Childs Nerv Syst 39, 2899–2927 (2023). https://doi.org/10.1007/s00381-023-06109-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-023-06109-6

Keywords

Navigation