Skip to main content

Advertisement

Log in

Surgery for spina bifida occulta: spinal lipoma and tethered spinal cord

  • Review
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

The technical evolution of the surgery for spina bifida occulta (SBO) over the course of a half-century was reviewed with special foci placed on the spinal lipoma and tethered spinal cord. Looking back through history, SBO had been included in spina bifida (SB). Since the first surgery for spinal lipoma in the mid-nineteenth century, SBO has come to be recognized as an independent pathology in the early twentieth century. A half-century ago, the only option available for SB diagnosis was the plain X-ray, and pioneers of the time persevered in the field of surgery. The classification of spinal lipoma was first described in the early 1970s, and the concept of tethered spinal cord (TSC) was proposed in 1976. Surgical management of spinal lipoma with partial resection was the most widely practiced approach and was indicated only for symptomatic patients. After understanding TSC and tethered cord syndrome (TCS), more aggressive approaches became preferred. A PubMed search suggested that there was a dramatic increase of publications on the topic beginning around 1980. There have been immense academic achievements and technical evolutions since then. From the authors’ viewpoint, landmark achievements in this field are listed as follows: (1) establishment of the concept of TSC and the understanding of TCS; (2) unraveling the process of secondary and junctional neurulation; (3) introduction of modern intraoperative neurophysiological mapping and monitoring (IONM) for surgery of spinal lipomas, especially the introduction of bulbocavernosus reflex (BCR) monitoring; (4) introduction of radical resection as a surgical technique; and (5) proposal of a new classification system of spinal lipomas based on embryonic stage. Understanding the embryonic background seems critical because different embryonic stages bring different clinical features and of course different spinal lipomas. Surgical indications and selection of surgical technique should be judged based on the background embryonic stage of the spinal lipoma. As time flows forward, technology continues to advance. Further accumulation of clinical experience and research will open the new horizon in the management of spinal lipomas and other SBO in the next half-century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Reigel DH, McLone DG (1994) Tethered spinal cord. In: Cheek WR (ed) Pediatric Neurosurgery, 3rd edn. W.B.Saunders Company, Philadelphia, pp 77–95

    Google Scholar 

  2. Yoshifuji K, Omori Y, Morota N (2021) Physiological defects of lumbosacral vertebral arches on computed tomography images in children. Childs Nerv Syst 37:1965–1971

    Article  PubMed  Google Scholar 

  3. Hoffman HJ, Hendrick EB, Humphreys RP (1976) The tethered spinal cord: its protean manifestations, diagnosis and surgical correction. Child’s Brain 2:145–155

    CAS  PubMed  Google Scholar 

  4. Smith GK (2001) The history of spina bifida, hydrocephalus, paraplegia, and incontinence. Pediatr Surg Int 17:424–432

    Article  CAS  PubMed  Google Scholar 

  5. Safavi-Abbasi S, Mapstone TB, Archer JB, Wilson C, Theodore N, Spetzler RF, Preul MC (2016) History of the current understanding and management of tethered spinal cord. J Neurosurg Spine 25:76–87

    Article  Google Scholar 

  6. McClugage SG, Watanabe K, Shoja MM, Loukas M, Tubbs RS, Oakes WJ (2012) The history of the surgical repair of spina bifida. Childs Nerv Syst 28:1693–2000

    Article  PubMed  Google Scholar 

  7. Tubbs RS, Cezayirli P, Blackerby WT, Shoja MM, Loukas M, Oakes WJ (2013) Govert Bidloo (1649–1713) and the first description of lipomyelomeningocele. Childs Nerv Syst 29:1219–1221

    Article  PubMed  Google Scholar 

  8. Morton J (1875) The treatment of spina bifida. Br Med J 2:608–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nicoll JH (1902) Spina bifida: its operative treatment amongst out-patients. Br Med J 1:1532–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pendleton C, Ahn ES, Jallo GI, QuiñoneS-Hinojosa A (2011) Harvey Cushing and early spinal dysraphism repair at Johns Hopkins Hospital. J Neurosurg Pediatrics 7:47–51. https://doi.org/10.3171/2010.10.PEDS10351

    Article  Google Scholar 

  11. Ingraham FD, Lowrey JJ (1943) Spina bifida and cranium bifidum. III. Occult spinal disorders. N Eng J Med 228:745–751

    Article  Google Scholar 

  12. Dubowitz V, Lober J, Zachary RB (1965) Lipoma of the cauda equina. Arch Dis Childhood 40:207–213

    Article  CAS  Google Scholar 

  13. Matson D (1969) Spina bifida and myelomeningocele. in: Neurosurgery of Infancy and Childhood, ed 2. Springfield, IL: Charles C Thomas, pp 5–60

  14. Rogers HM, Long DM, Chou SN, French LA (1971) Lipomas of the spinal cord and cauda equina. J Neurosurg 34:349–354

    Article  CAS  PubMed  Google Scholar 

  15. McLone DG, Thompson DNP (2001) Lipoma of the spine. In: McLone DG (ed) Pediatric neurosurgery, 4th edn. W.B. Saunders Company, Philadelphia, pp 289–301

  16. Yang J, Lee JY, Kim KH, Wang KC (2021) Disorders of secondary neurulation: mainly focused on pathoembryogenesis. J Korean Neurosurg Soc 64:386–405

    Article  PubMed  PubMed Central  Google Scholar 

  17. Saitsu H, Yamada S, Uwabe C, Ishibashi M, Shiota K (2004) Development of the posterior neural tube in human embryos. Anat Embryol 209:107–117. https://doi.org/10.1007/s00429-004-0421-2

    Article  Google Scholar 

  18. Shimokita E, Takahashi Y (2011) Secondary neurulation: fate-mapping and gene manipulation of the neural tube in tail bud. Develop Growth Differ 53:401–410. https://doi.org/10.1111/j.1440-169X.2011.01260.x

    Article  Google Scholar 

  19. Dady A, Havis E, Escriou V, Catala M, Duband JL (2014) Junctional neurulation: a unique developmental program shaping a discrete region of the spinal cord highly susceptible to neural tube defects. J Neurosci 34:13208–13221

    Article  PubMed  PubMed Central  Google Scholar 

  20. Eibach S, Moes G, Hou YJ, Zovickian J, Pang D (2017) Unjoined primary and secondary neural tubes: junctional neural tube defect, a new form of spinal dysraphism caused by disturbance of junctional neurulation. Childs Nerv Syst 33:1633–1647

    Article  PubMed  Google Scholar 

  21. Wang KC, Lee JS, Kim K, Im YJ, Park K, Kim KH et al (2020) Do junctional neural tube defect and segmental spinal dysgenesis have the same pathoembryological background? Childs Nerv Syst 36:241–250. https://doi.org/10.1007/s00381-019-04425-4

    Article  PubMed  Google Scholar 

  22. Morota N, Ihara S, Ogiwara H (2017) New classification of spinal lipomas based on embryonic stage. J Neurosurg Pediatr 19:428–439. https://doi.org/10.3171/2016.10.PEDS16247

    Article  PubMed  Google Scholar 

  23. Zerah M, Roujeau T, Catala M, Pierre-Kahn A: Spinal lipomas, (2008). In: Özek MM, Cinalli G, Maixner WJ (eds) Spina bifida: management and outcome. Springer-Verlag, Milan, pp 445–474

    Chapter  Google Scholar 

  24. Chapman PH (1982) Congenital intraspinal lipomas: anatomic considerations and surgical treatment. Child’s Brain 9:37–47

    CAS  PubMed  Google Scholar 

  25. Arai H, Sato K, Okuda O, Miyajima M, Hishii M, Nakanishi H, Ishii H (2001) Surgical experience of 120 patients with lumbosacral lipomas. Acta Neurochir (Wien) 143:857–864

    Article  CAS  PubMed  Google Scholar 

  26. Pang D (1995) Spinal cord lipomas (1995). In: Pang D (ed) Disorders of the pediatric spine. Raven Press, New York, pp 175–201

    Google Scholar 

  27. Pang D, Zovickian J, Wong ST, Hou YJ, Moes GS (2013) Surgical treatment of complex spinal cord lipomas. Child’s Nerv Syst 29:1485–1513

    Article  Google Scholar 

  28. Pang D, Zovickian J, Oviedo A (2009) Long-term outcome of total and near-total resection of spinal cord lipomas and radical reconstruction of the neural placode. Neurosurgery 65:511–529

    Article  PubMed  Google Scholar 

  29. Gomi A, Oguma H, Furukawa R (2013) Sacrococcygeal dimple: new classification and relationship with spinal lesions. Childs Nerv Syst 29:1641–1645

    Article  PubMed  Google Scholar 

  30. Harada A, Nishiyama K, Yoshimura J, Sano M, Fujii Y (2014) Intraspinal lesion associated with sacrococcygeal dimples. J Neurosurg Pediatr 14:81–86

    Article  PubMed  Google Scholar 

  31. Tominey S, Kaliaperumal C, Callo P (2020) External validation of a new classification of spinal lipoma based on embryonic stage. J Neurosurg Pediatr 25:394–401. https://doi.org/10.3171/2019.11.PEDS19575

    Article  Google Scholar 

  32. Bassett RC (1950) The neurologic deficit associated with lipomas of the cauda equina. Ann Snrg 131:109–116

    CAS  Google Scholar 

  33. Schut L, Bruce DA, Sutton LN (1983) The management of the child with a lipomyelomeningocele. Clin Neurosurg 30:446–476

    Article  Google Scholar 

  34. Hoffman HJ, Taecholarn C, Hendrick EB, Humphreys RP (1985) Management of lipomyelomeningoceles. Experience at the Hospital for Sick Children. Toronto J Neurosurg 62:1–8

    Article  CAS  PubMed  Google Scholar 

  35. Pierre-Kahn A, Zerah M, Renier D, Cinalli G, Sainte-Rose C, Lellouch-Tubiana A, Brunelle F, Le Merrer M, Giudicelli Y, Pichon J, Kleinknecht B, Nataf F (1997) Congenital lumbosacral lipomas. Childs Nerv Syst 13:298–334

    Article  CAS  PubMed  Google Scholar 

  36. Kulkarni AV, Pierre-Kahn A, Zerah M (2004) Conservative management of asymptomatic spinal lipomas of the conus. Neurosurgery 54:868–873. https://doi.org/10.1097/01.ede.0000100282.03466.2c. PMID: 14712157

    Article  PubMed  Google Scholar 

  37. Pang D, Zovickian J, Oviedo A (2010) Long-term outcome of total and near-total resection of spinal cord lipomas and radical reconstruction of the neural placode, part II. Neurosurgery 66:253–273

    Article  PubMed  Google Scholar 

  38. Wykes V, Desai D, Thompson DN (2012) Asymptomatic lumbosacral lipomas—a natural history study. Childs Nerv Syst 28:1731–1739

    Article  PubMed  Google Scholar 

  39. Talamonti G, D’Aliberti G, Nichelatti M, Debernardi A, Picano M, Redaelli T (2014) Asymptomatic lipomas of the medullary conus: surgical treatment versus conservative management. J Neurosurg Pediatrics 14:245–254

    Article  Google Scholar 

  40. Pérez da Rosa S, Scavarda D, Choux M (2016) Results of the prophylactic surgery of lumbosacral lipomas 20 years of experience in the pediatric neurosurgery department La Timone Enfants Hospital, Marseille, France. Childs Nerv Syst 32:2205–2209. https://doi.org/10.1007/s00381-016-3198-8

    Article  Google Scholar 

  41. De Vloo P, Sharma J, Alderson L, Jankovic I, Tahir MZ, Desai D, Pang D, Thompson DNP (2022) Radical resection of lumbosacral lipomas in children: the Great Ormond Street Hospital experience. Child’s Nerv Syst 38:1113–1123. https://doi.org/10.1007/s00381-022-05483-x

    Article  Google Scholar 

  42. Yoshifuji K, Morota N, Omori Y, Koyanagi I, Mikuni N (2022) Physiological rapid growth of spinal lipoma in the early postnatal period. J Neurosurg Pediatr 29:634–642. https://doi.org/10.3171/2022.1.PEDS21474

    Article  PubMed  Google Scholar 

  43. McLone DG (2001) Lipomyelomeningocele repair. In: McLone DG (ed) Pediatric neurosurgery, 4th edn. W.B. Saunders Company, Philadelphia, pp 302—306

  44. Arocho-Quinones EV, Kolimas A, LaViolette PS, Kaufman BA, Foy AB, Zwienenberg M, Lew SM (2018) Split laminotomy versus conventional laminotomy: postoperative outcomes in pediatric patients. J Neurosurg Pediatr 21:615–625. https://doi.org/10.3171/2017.12.PEDS17368

    Article  PubMed  Google Scholar 

  45. James HE, Williams J, Brock W (1984) Radical removal of lipoma of the conus and cauda equina with laser microneurosurgery. Neurosurgery 15:340–343

    Article  CAS  PubMed  Google Scholar 

  46. Lim JX, Low SYY, Ng LP, Seow WT (2022) Prevention and treatment of CSF leaks in congenital complex spinal lipomas. Acta Neurochir 164:1157–1160. https://doi.org/10.1007/s00701-021-05095-5

    Article  PubMed  Google Scholar 

  47. Yahanda AT, Simon LE, Limbrick DD Jr (2021) Outcomes for various dural graft materials after posterior fossa decompression with duraplasty for Chiari malformation type 1: a systematic review and meta-analysis. J Neurosurg 135:1356–1369. https://doi.org/10.3171/2020.9.JNS202641

    Article  Google Scholar 

  48. Pang D (2015) Total resection of complex spinal cord lipomas: how, why, and when to operate? Neurol Med Chir (Tokyo) 55:695–721. https://doi.org/10.2176/nmc.ra.2014-0442

    Article  PubMed  Google Scholar 

  49. Pang D (2019) Surgical management of complex spinal cord lipomas: how. Why, and when to operate. A review J Neurosurg Pediatr 23:537–556. https://doi.org/10.3171/2019.2.PEDS18390

    Article  PubMed  Google Scholar 

  50. Pang D, Casey K (1983) Use of an anal sphincter pressure monitor during operations on the sacral spinal cord and nerve roots. Neurosurgery 13:562–568

    Article  CAS  PubMed  Google Scholar 

  51. Kothbauer KF, Novak K (2004) Intraoperative monitoring for tethered cord surgery: an update. Neurosurg Focus 16 (2): Article 8

  52. Kothbauer KF, Deletis V (2010) Intraoperative neurophysiology of the conus medullaris and cauda equina. Childs Nerv Syst 26:247–253. https://doi.org/10.1007/s00381-009-1020-6

    Article  PubMed  Google Scholar 

  53. Sala F, Squintani G, Tramontano V, Arcaro C, Faccioli F, Mazza C (2013) Intraoperative neurophysiology in tethered cord surgery: techniques and results. Childs Nerv Syst 29:1611–1624. https://doi.org/10.1007/s00381-013-2188-3

    Article  PubMed  Google Scholar 

  54. Dulfer SE, Drost G, Lange F, Journee HL, Wapstra FH, Hoving EW (2017) Long-term evaluation of intraoperative neurophysiological monitoring-assisted tethered cord surgery. Childs Nerv Syst 33:1985–1995. https://doi.org/10.1007/s00381-017-3478-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Morota N, Deletis V, Constantini S, Kofler M, Cohen H, Epstein FJ (1997) The role of motor evoked potentials during surgery for intramedullary spinal cord tumor. Neurosurgery 41:1327–1336

    Article  CAS  PubMed  Google Scholar 

  56. Deletis V, Vodusek DB (1997) Intraoperative recording of the bulbocavernosus reflex. Neurosurgery 40:88–93

    CAS  PubMed  Google Scholar 

  57. Morota N (2019) Intraoperative neurophysiological monitoring of the bulbocavernosus reflex during surgery for conus spinal lipoma: what are the warning criteria? J Neurosurg Pediatr 23:639–647. https://doi.org/10.3171/2018.12.PEDS18535

    Article  Google Scholar 

  58. Deletis V, Vodusek DB, Abbott R, Epstein FJ, Turndorf H (1992) Intraoperative monitoring of the dorsal sacral roots: minimizing the risk of iatrogenic micturition disorders. Neurosurgery 30:72–75

    Article  CAS  PubMed  Google Scholar 

  59. Ogiwara H, Morota N (2014) Pudendal afferents mapping in posterior sacral rhizotomies. Neurosurgery 74:171–175. https://doi.org/10.1227/NEU.0000000000000235

    Article  PubMed  Google Scholar 

  60. Lichtenstein BW (1940) Spinal dysraphism: spina bifida and myelodysplasia. Arch Neurol Psychiatry 44:792–809

    Article  Google Scholar 

  61. Garceau GJ (1953) The filum terminale syndrome (the cord-traction syndrome). J Bone Joint Surg Am 35-A:711–716

  62. Saker E, Cox M, Loukas M, Oskouian RJ, Tubbs RS (2017) George J. Garceau (1896–1977) and the first introduction of the “filum terminale syndrome.” Childs Nerv Syst 33:1233–1236. https://doi.org/10.1007/s00381-016-3205-0

    Article  PubMed  Google Scholar 

  63. Yamada S, Won DJ, Pezeshkpour G, Yamada BS, Yamada SM, Siddiqi J, Zouros A, Colohan ART (2007) Pathophysiology of tethered cord syndrome and similar complex disorders. Neurosurg Focus 23(2):E6. https://doi.org/10.3171/FOC-07/08/E6

    Article  PubMed  Google Scholar 

  64. Yamada S, Zinke DE, Sanders D (1981) Pathophysiology of “tethered cord syndrome.” J Neurosurg 54:494–503

    Article  CAS  PubMed  Google Scholar 

  65. Tani S, Yamada S, Knighton RS (1987) Extensibility of the lumbar and sacral cord. Pathophysiology of the tethered spinal cord in cats. J Neurosurg 66:116–123

    Article  CAS  PubMed  Google Scholar 

  66. Yamada S, Won DJ (2007) What is the true tethered cord syndrome? Childs Nerv Syst 23:371–375. https://doi.org/10.1007/s00381-006-0276-3

    Article  PubMed  Google Scholar 

  67. Bui CJ, Tubbs RS, Oakes WJ (2007) Tethered cord syndrome in children: a review. Neurosurg Focus 23(2):E2

    Article  PubMed  Google Scholar 

  68. Cools MJ, Al-Holou WN, Stetler WR Jr, Wilson TJ, Muraszko KM, Ibrahim M, Marca FL, Garton HJL, Maher CO (2014) Filum terminale lipomas: imaging prevalence, natural history, and conus position. J Neurosurg Pediatr 13:559–567

    Article  PubMed  Google Scholar 

  69. Lim JX, Fong E, Goh C, Ng LP, Merchant K, Low DCY, Seow WT, Low SYY (2023) Fibrofatty filum terminale: long-term outcomes from a Singapore children’s hospital. J Neurosurg Pediatr 31:197–205

    Article  PubMed  Google Scholar 

  70. Kesler H, Dias MS, Kalapos P (2007) Termination of the normal conus medullaris in children: a whole-spine magnetic resonance imaging study. Neurosurg Focus 23(2):E7

    Article  PubMed  Google Scholar 

  71. Khoury AE, Hendrick EB, McLorie GA, Kulkarni A, Churchill BM (1990) Occult spinal dysraphism: clinical and urodynamic outcome after division of the filum terminale. J Urol 144:426–428. https://doi.org/10.1016/s0022-5347(17)39481-8

    Article  CAS  PubMed  Google Scholar 

  72. Selden NR, Nixon RR, Skoog SR, Lashley DB (2006) Minimal tethered cord syndrome associated with thickening of the terminal filum. J Neurosurg 105(3 Suppl Pediatrics):214–218

    PubMed  Google Scholar 

  73. Selden NR (2006) Occult tethered cord syndrome: the case for surgery. J Neurosurg 104(5 Suppl Pediatrics):302–304

    PubMed  Google Scholar 

  74. Drake JM (2006) Occult tethered cord syndrome: not an indication for surgery. J Neurosurg 104(5 Suppl Pediatrics):305–308

    PubMed  Google Scholar 

  75. Steinbok P, Garton HJL, Gupta N (2006) Occult tethered cord syndrome: a survey of practice patterns. J Neurosurg 104(5 Suppl Pediatrics):309–313

    PubMed  Google Scholar 

  76. Steinbok P, MacNeily AE (2007) Section of the terminal filum for occult tethered cord syndrome: toward a scientific answer. Neurosurg Focus 23(2):E5

    Article  PubMed  Google Scholar 

  77. Michael MM, Garton ALA, Kuzan-Fischer CM, Uribe-Cardenas R, Greenfield JP (2021) A critical analysis of surgery for occult tethered cord syndrome. Childs Nerv Syst 37:3003–3011. https://doi.org/10.1007/s00381-021-05287-5

    Article  PubMed  Google Scholar 

  78. Tamura G, Morota N, Ihara S (2017) Impact of magnetic resonance imaging and urodynamic studies on the management of sacrococcygeal dimples. J Neurosurg Pediatr 20:289–297

    Article  PubMed  Google Scholar 

  79. Kamei N, Nakamae T, Nakanishi K, Morisako T, Harada T, Maruyama T, Adachi N (2022) Comparison of the electrophysiological characteristics of tight filum terminale and tethered cord syndrome. Acta Neurochir 164:2235–2242. https://doi.org/10.1007/s00701-022-05298-4

    Article  PubMed  Google Scholar 

  80. Lew SM, Kothbauer KF (2007) Tethered cord syndrome: an updated review. Pediatr Neurosurg 43:236–248. https://doi.org/10.1007/s00701-022-05298-4

    Article  PubMed  Google Scholar 

  81. Dias MS, Wang M, Rizk EB, Bowman R, Partington MD, Blount JP, Rocque BG, Hopson B, Ettinger D, Lee A, Walker WO, National Spina Bifida Registry Group (2021) Tethered spinal cord among individuals with myelomeningocele: an analysis of the National Spina Bifida Patient Registry. J Neurosurg Pediatr 28:21–27

    Article  Google Scholar 

  82. Goodrich DJ, Patel D, Loukas M, Tubbs RS, Oakes WJ (2016) Symptomatic retethering of the spinal cord in postoperative lipomyelomeningocele patients : a meta-analysis. Childs Nerv Syst 32:121–126

    Article  PubMed  Google Scholar 

  83. Hayashi T, Kimiwada T, Shirane R, Tominaga T (2022) Retethering risk in pediatric spinal lipoma of the conus medullaris. J Neurosurg Pediatr 29:342–349

    Article  PubMed  Google Scholar 

  84. Lee JY, Kim KH, Park K, Wang KC (2020) Retethering: a neurosurgical viewpoint. J Korean Neurosurg Soc 63:345–357

    Article  Google Scholar 

  85. Colak A, Pollack IF, Albright AL (1998) Recurrent tethering: a common long term problem after lipomyelomeningocele repair. Pediatr Neurosurg 29:184–190

    Article  CAS  PubMed  Google Scholar 

  86. Maher CO, Goumnerova L, Madsen JR, Proctor M, Scott M (2007) Outcome following multiple repeated spinal cord untethering operations. J Neurosurg 106(6 Suppl Pediatrics):434–438

    PubMed  Google Scholar 

  87. Sakamoto H, Hakuba A, Fujitani K, Nishimura S (1991) Surgical treatment of the retethered spinal cord after repair of lipomyelomeningocele. J Neurosurg 74:709–714

    Article  CAS  PubMed  Google Scholar 

  88. Tubbs RS, Oakes WJ (2006) A simple method to deter retethering in patients with spinal dysraphism. Childs Nerv Syst 22:715–716

    Article  PubMed  Google Scholar 

  89. Morota N, Ihara S, Inukai M, Kuroha S (2023) Ventral anchoring of the conus medullaris: a new surgical technique preventing the recurrence of retethering after surgery for tethered spinal cord. Childs Nerv Syst (in press)

  90. Hsieh PC, Ondra SI, Grande AW, O‘Shaughnessy BA, Bierbrauer K, Crone KR, Halpin RJ, Suk I, Koski T, Gokaslan Zl, Kuntz C, (2009) Posterior vertebral column subtraction osteotomy: a novel surgical approach for the treatment of multiple recurrences of tethered cord syndrome. J Neurosurg Spine 10:278–286

    Article  PubMed  Google Scholar 

  91. McVeigh LG, Anokwute MC, Chen S, Jea A (2022) Spinal column shortening for tethered cord syndrome: a systematic review and individual patient data meta-analysis. J Neurosurg Pediatr 29:624–633

    Article  PubMed  Google Scholar 

  92. Xiong Y, Yang L, Zhen W, Fangyong D, Feng W, Ting L (2018) Conservative and surgical treatment of pediatric asymptomatic lumbosacral lipoma: a meta-analysis. Neurosurg Rev 41:737–743

    Article  PubMed  Google Scholar 

  93. Seki T, Hida K, Yano S, Houkin K (2018) surgical outcomes of pediatric patients with asymptomatic tethered cord syndrome. Asian Spine J 12:551–555

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hayashi C, Kumano Y, Hirokawa D, Sato H, Yamazaki Y (2020) Long-term urological outcomes of spinal lipoma after prophylactic untethering in infancy: real-world outcomes by lipoma anatomy. Spinal Cord 58:490–495

    Article  PubMed  Google Scholar 

  95. Vora TK, Girishan S, Moorthy RK, Rajshekhar V (2021) Early- and long-term surgical outcomes in 109 children with lipomyelomeningocele. Childs Nerv Syst 37:1623–1632

    Article  PubMed  Google Scholar 

  96. Tu A, Hengel R, Cochrane DD (2016) The natural history and management of patients with congenital deficits associated with lumbosacral lipomas. Childs Nerv Syst 32:667–673

    Article  PubMed  Google Scholar 

  97. Thompson DNP, Spoor J, Schotman M, Maestri S, Craven CL, Desai D (2021) Does conus morphology have implications for outcome in lumbosacral lipoma? Childs Nerv Syst 37:2025–2031

    Article  PubMed  Google Scholar 

  98. Saeed F, Tyagi A (2023) Transition from partial to near-total/radical resection of spinal cord lipomas. Childs Nerv Syst. https://doi.org/10.1007/s00381-023-05844-0

  99. Valentini LG, Babini M, Cordella R, Beretta E, Destro F, Murabito P, Caldiroli D, Devigili G, Selvaggio G (2021) Early de-tethering: analysis of urological and clinical consequences in a series of 40 children. Childs Nerv Syst 37:941–949

    Article  PubMed  Google Scholar 

  100. Sarkar S, Vora TK, Rajshekhar V (2022) Risk factors for pre-operative functional deterioration in children with lipomyelomeningocele. Childs Nerv Syst 38:587–595. https://doi.org/10.1007/s00381-021-05404-4

    Article  PubMed  Google Scholar 

  101. Kang JK, Yoon KJ, Ha SS, Lee IW, Jeun SS, Kang SG (2009) Surgical management and outcome of tethered cord syndrome in school-aged children, adolescents, and young adults. J Korean Neurosurg Soc 46:468–471

    Article  PubMed  PubMed Central  Google Scholar 

  102. Valentini LG, Selvaggio G, Erbetta A, Cordella R, Pecoraro MG, Bova S, Boni E, Beretta E, Furlanetto M (2013) Occult spinal dysraphism: lessons learned by retrospective analysis of 149 surgical cases about natural history, surgical indications, urodynamic testing, and intraoperative neurophysiological monitoring. Childs Nerv Syst 29:1657–1669

    Article  PubMed  Google Scholar 

  103. Yerkes EB, Halline C, Yoshiba G, Meyer TA, Rosoklija I, Bowman R, McLone D, Cheng EY (2017) Lipomyelomeningocele for the urologist: should we view it the same as myelomeningocele? J Pediatr Urol 13:371.e1-371.e8

    Article  CAS  PubMed  Google Scholar 

  104. Kim L, Do MT, Jung HD, Im YJ, Wang KC, Lee JY, Park K (2022) Preoperative videourodynamic study is helpful in predicting long-term postoperative voiding function in asymptomatic patients with closed spinal dysraphism. Int Neurourol J 26:60–68

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ogiwara H, Lyszczarz A, Alden TD, Bowman RM, McLoneDG TT (2011) Retethering of transected fatty filum terminales. J Neurosurg Pediatrics 7:42–46. https://doi.org/10.3171/2010.10.PEDS09550

    Article  Google Scholar 

  106. Finger T, Schaumann A, Grillet F, Schulz M, Thomale UW (2020) Retethering after transection of a tight filum terminale, postoperative MRI may help to identify patients at risk. Childs Nerv Syst 36:1499–1506

    Article  PubMed  Google Scholar 

  107. Hayashi T, Takemoto J, Ochiai T, Kimiwada T, Shirane R, Sakai K, Nakagawa H, Tominaga T (2013) Surgical indication and outcome in patients with postoperative retethered cord syndrome. J Neurosurg Pediatr 11:133–139

    Article  PubMed  Google Scholar 

  108. Stamates MM, Frim DM, Yang CW, Katzman GL, Ali S (2018) Magnetic resonance imaging in the prone position and the diagnosis of tethered spinal cord. Neurosurg Pediatr 21:4–10

    Article  Google Scholar 

  109. Bruzek AK, Starr J, Garton HJL, Muraszko KM, Maher CO, Strahle JM (2019) Syringomyelia in children with closed spinal dysraphism: long-term outcomes after surgical intervention. J Neurosurg Pediatr 13:1–7

    Google Scholar 

  110. Idriceanu T, Beuriat PA, Di Rocco F, Szathmari A, Mottolese C (2022) Recurrent tethering in conus lipomas: a late complication not to be ignored. World Neurosurg 168:e12–e18

    Article  PubMed  Google Scholar 

  111. Kondo A, Morota N, Date H, Yoshifuji K, Morishima T, Miyazato M, Shirane R, Sakai H, Pooh KH, Watanabe T (2015) Awareness of folic acid use increases its consumption, and reduces the risk of spina bifida. Br J Nutr 114:84–90. https://doi.org/10.1017/S0007114515001439

    Article  CAS  PubMed  Google Scholar 

  112. Shlobin NA, LoPresti MA, Du RY, Lam S (2021) Folate fortification and supplementation in prevention of folate-sensitive neural tube defects: a systematic review of policy. J Neurosurg Pediatr 27:294–310

    Article  Google Scholar 

  113. Caceres A, Bount JP, Messing-Jünger M, Chatterjee S, Fieggen G, Salomao JF (2021) The International Society for Pediatric Neurosurgery resolution on mandatory folic acid fortification of staple foods for prevention of spina bifida and anencephaly and associated disability and child mortality. Childs Nerv Syst 37:1809–1812

    Article  PubMed  Google Scholar 

  114. McNeely PD, Howes WJ (2004) Ineffectiveness of dietary folic acid supplementation on the incidence of lipomyelomeningocele: pathogenetic implications. J Neurosurg (Pediatrics 2) 100:98–100

Download references

Author information

Authors and Affiliations

Authors

Contributions

Nobuhito Morota and Hiroaki Sakamoto wrote the text, and Nobuhito Morota prepared the figures. Both of Nobuhito Morota and Hiroaki Sakamoto reviewed the final version of the manuscript and confirmed it.

Corresponding author

Correspondence to Nobuhito Morota.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morota, N., Sakamoto, H. Surgery for spina bifida occulta: spinal lipoma and tethered spinal cord. Childs Nerv Syst 39, 2847–2864 (2023). https://doi.org/10.1007/s00381-023-06024-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-023-06024-w

Keywords

Navigation