Skip to main content

Advertisement

Log in

Correlating brain volume and callosal thickness with clinical and laboratory indicators of disease severity in children with HIV-related brain disease

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Background

Objective MRI markers of central nervous system disease severity may precede subjective features of HIV encephalopathy in children. Previous work in HIV-infected adults shows that brain atrophy was associated with low CD4 and with neuropsychological impairment. Significant thinning of the corpus callosum (CC), predominantly anteriorly, was also found in HIV-infected adults and correlated with CD4 levels. These findings have not been tested in children.

Purpose

The aim of this study was to determine if brain volume and midsagittal CC linear measurements (thickness and length) on MRI in children with HIV-related brain disease correlate with clinical and laboratory parameters of disease severity.

Methods

Retrospective MRI analysis in children with HIV-related brain disease used a volumetric analysis software and a semi-automated tool to measure brain volume and callosal thickness/length, respectively. Each measure was correlated with clinical parameters of disease severity including Griffiths Mental Development scores (GMDS), absolute CD4 counts (cells/mm3), nadir CD4 (the lowest CD4 recorded, excluding baseline), duration of HAART, and decreased brain growth.

Results

Thirty-three children with HIV-related brain disease were included. Premotor segment of the CC mean thickness correlated with age (p = 0.394). Motor CC maximum thickness correlated significantly with general developmental quotient (p = 0.0277); CC length correlated with a diagnosis of acquired microcephaly (p = 0.0071) and to CD4 level closest to date of the MRI scan (p = 0.04).

Conclusions

Length of the CC and the “motor CC segment” may represent surrogate clinical biomarkers of central nervous system disease severity and with decreased level of immunity in HIV-infected patients that precede established HIV encephalopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CC:

Corpus callosum

TBV:

Total brain volume

GM:

Gray matter

WM:

White matter

GMDS:

Griffiths Mental Development scores

References

  1. Gavin P, Yogev R (1999) Central nervous system abnormalities in pediatric human immunodeficiency virus infection. Pediatr Neurosurg 31:115–123

    Article  CAS  PubMed  Google Scholar 

  2. Fowler MG (1994) Pediatric HIV infection: neurologic and neuropsychologic findings. Acta Paediatr Suppl 400:59–62

    Article  CAS  PubMed  Google Scholar 

  3. Mitchell W (2001) Neurological and developmental effects of HIV and AIDS in children and adolescents. Ment Retard Dev Disabil Res Rev 7:211–216

    Article  CAS  PubMed  Google Scholar 

  4. Sanchez-Ramon S, Resino S, Bellon Cano JM, Ramos JT, Gurbindo D et al (2003) Neuroprotective effects of early antiretrovirals in vertical HIV infection. Pediatr Neurol 29:218–221

    Article  PubMed  Google Scholar 

  5. Schmitt B, Seeger J, Kreuz W, Enenkel S, Jacobi G (1991) Central nervous system involvement of children with HIV infection. Dev Med Child Neurol 33:535–540

    Article  CAS  PubMed  Google Scholar 

  6. Ances BM, Ortega M, Vaida F, Heaps J, Paul R (2012) Independent effects of HIV, aging, and HAART on brain volumetric measures. J Acquir Immune Defic Syndr 59:469–477

    Article  PubMed Central  PubMed  Google Scholar 

  7. Thurnher MM, Schindler EG, Thurnher SA, Pernerstorfer-Schon H, Kleibl-Popov C et al (2000) Highly active antiretroviral therapy for patients with AIDS dementia complex: effect on MR imaging findings and clinical course. AJNR Am J Neuroradiol 21:670–678

    CAS  PubMed  Google Scholar 

  8. Spreer J, Enenkel-Stoodt S, Funk M, Fiedler A, de Simone A et al (1994) Neuroradiological findings in perinatally HIV-infected children. Röfo 161:106–112

    Article  CAS  PubMed  Google Scholar 

  9. Johann-Liang R, Lin K, Cervia J, Stavola J, Noel G (1998) Neuroimaging findings in children perinatally infected with the human immunodeficiency virus. Pediatr Infect Dis J 17:753–754

    Article  CAS  PubMed  Google Scholar 

  10. Thompson PM, Dutton RA, Hayashi KM, Lu A, Lee SE et al (2006) 3D mapping of ventricular and corpus callosum abnormalities in HIV/AIDS. Neuroimage 31:12–23

    Article  PubMed  Google Scholar 

  11. Chiang MC, Dutton RA, Hayashi KM, Lopez OL, Aizenstein HJ et al (2007) 3D pattern of brain atrophy in HIV/AIDS visualized using tensor-based morphometry. Neuroimage 34:44–60

    Article  PubMed Central  PubMed  Google Scholar 

  12. Dewey J, Hana G, Russell T, Price J, McCaffrey D et al (2010) Reliability and validity of MRI-based automated volumetry software relative to auto-assisted manual measurement of subcortical structures in HIV-infected patients from a multisite study. Neuroimage 51:1334–1344

    Article  PubMed Central  PubMed  Google Scholar 

  13. Cohen RA, Harezlak J, Schifitto G, Hana G, Clark U et al (2010) Effects of nadir CD4 count and duration of human immunodeficiency virus infection on brain volumes in the highly active antiretroviral therapy era. J Neurovirol 16:25–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Griffiths R (1996) The Griffiths Mental Development Scales, from birth to 2 years. Association for research in infant and child development. The Test Agency, Oxford

    Google Scholar 

  15. [No authors listed] (1991) Nomenclature and research case definitions for neurologic manifestations of human immunodeficiency virus-type 1 (HIV-1) infection. Report of a Working Group of the American Academy of Neurology AIDS Task Force. Neurology 41: 778–785.

  16. Wolters PB (2006) Neurobehavioural function and assessment of children and adolescents with HIV-1 infection. In: Zeichner SL RJ (ed) From Handbook of Pediatric HIV care. Cambridge University Press, Cambridge, pp 309–332

    Chapter  Google Scholar 

  17. Andronikou S, Spottiswoode BS, Tomazos N (2012) A semi-automated method for measuring thickness and white matter integrity of the corpus callosum. S Afr J Radiol 16:130–133

    Google Scholar 

  18. Luders E, Narr KL, Bilder RM, Thompson PM, Szeszko PR et al (2007) Positive correlations between corpus callosum thickness and intelligence. Neuroimage 37:1457–1464

    Article  PubMed Central  PubMed  Google Scholar 

  19. Garel C, Cont I, Alberti C, Josserand E, Moutard ML et al (2011) Biometry of the corpus callosum in children: MR imaging reference data. AJNR Am J Neuroradiol 32:1436–1443

    Article  CAS  PubMed  Google Scholar 

  20. Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited—comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 32:989–994

    Article  PubMed  Google Scholar 

  21. Dougherty RF, Ben-Shachar M, Deutsch G, Potanina P, Bammer R et al (2005) Occipital-callosal pathways in children: validation and atlas development. Ann N Y Acad Sci 1064:98–112

    Article  PubMed  Google Scholar 

  22. Hasan KM, Kamali A, Iftikhar A, Kramer LA, Papanicolaou AC et al (2009) Diffusion tensor tractography quantification of the human corpus callosum fiber pathways across the lifespan. Brain Res 1249:91–100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Carone DA, Benedict RH, Dwyer MG, Cookfair DL, Srinivasaraghavan B et al (2006) Semi-automatic brain region extraction (SABRE) reveals superior cortical and deep gray matter atrophy in MS. Neuroimage 29:505–514

    Article  CAS  PubMed  Google Scholar 

  24. von Bezing H, Andronikou S, van Toorn R, Douglas T (2012) Are linear measurements and computerized volumetric ratios determined from axial MRI useful for diagnosing hydrocephalus in children with tuberculous meningitis? Childs Nerv Syst 28:79–85

    Article  Google Scholar 

  25. Luiz D, Faragher B, Barnard A. Griffiths Mental Development Scales—extended revised, two to eight years. Oxford: Association for research in infant and Child Development. The Test Agency. http://www.hogrefe.co.uk/griffiths-mental-development-scales-extended-revised-2-to-8-years-gmds-er-2-8.html. Accessed 7 May 2014

  26. Pomara N, Crandall DT, Choi SJ, Johnson G, Lim KO (2001) White matter abnormalities in HIV-1 infection: a diffusion tensor imaging study. Psychiatry Res 106:15–24

    Article  CAS  PubMed  Google Scholar 

  27. States LJ, Zimmerman RA, Rutstein RM (1997) Imaging of pediatric central nervous system HIV infection. Neuroimaging Clin N Am 7:321–339

    CAS  PubMed  Google Scholar 

  28. Kollar K, Jelenik Z, Hegelsberger E (2003) Neurologic aspects of HIV infections—follow-up of pediatric patients. Ideggyogy Sz 56:397–404

    PubMed  Google Scholar 

  29. Tucker KA, Robertson KR, Lin W, Smith JK, An H et al (2004) Neuroimaging in human immunodeficiency virus infection. J Neuroimmunol 157:153–162

    Article  CAS  PubMed  Google Scholar 

  30. Patsalides AD, Wood LV, Atac GK, Sandifer E, Butman JA et al (2002) Cerebrovascular disease in HIV-infected pediatric patients: neuroimaging findings. AJR Am J Roentgenol 179:999–1003

    Article  PubMed  Google Scholar 

  31. Yang Y, Phillips OR, Kan E, Sulik KK, Mattson SN et al (2012) Callosal thickness reductions relate to facial dysmorphology in fetal alcohol spectrum disorders. Alcohol Clin Exp Res 36:798–806

    Article  PubMed Central  PubMed  Google Scholar 

  32. Luders E, Narr KL, Hamilton LS, Phillips OR, Thompson PM et al (2009) Decreased callosal thickness in attention-deficit/hyperactivity disorder. Biol Psychiatry 65:84–88

    Article  PubMed Central  PubMed  Google Scholar 

  33. Westerhausen R, Luders E, Specht K, Ofte SH, Toga AW et al (2011) Structural and functional reorganization of the corpus callosum between the age of 6 and 8 years. Cereb Cortex 21:1012–1017

    Article  PubMed Central  PubMed  Google Scholar 

  34. Luders E, Thompson PM, Toga AW (2010) The development of the corpus callosum in the healthy human brain. J Neurosci 30:10985–10990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Luders E, Thompson PM, Narr KL, Zamanyan A, Chou YY et al (2011) The link between callosal thickness and intelligence in healthy children and adolescents. Neuroimage 54:1823–1830

    Article  PubMed Central  PubMed  Google Scholar 

  36. Northam GB, Liegeois F, Chong WK, Wyatt JS, Baldeweg T (2011) Total brain white matter is a major determinant of IQ in adolescents born preterm. Ann Neurol 69:702–711

    Article  PubMed  Google Scholar 

  37. Narberhaus A, Segarra D, Caldu X, Gimenez M, Junque C et al (2007) Gestational age at preterm birth in relation to corpus callosum and general cognitive outcome in adolescents. J Child Neurol 22:761–765

    Article  PubMed  Google Scholar 

  38. Becker JT, Sanders J, Madsen SK, Ragin A, Kingsley L et al (2011) Subcortical brain atrophy persists even in HAART-regulated HIV disease. Brain Imaging Behav 5:77–85

    Article  PubMed Central  PubMed  Google Scholar 

  39. Ciccarelli N, Fabbiani M, Di Giambenedetto S, Fanti I, Baldonero E et al (2011) Efavirenz associated with cognitive disorders in otherwise asymptomatic HIV-infected patients. Neurology 76:1403–1409

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savvas Andronikou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andronikou, S., Ackermann, C., Laughton, B. et al. Correlating brain volume and callosal thickness with clinical and laboratory indicators of disease severity in children with HIV-related brain disease. Childs Nerv Syst 30, 1549–1557 (2014). https://doi.org/10.1007/s00381-014-2434-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-014-2434-3

Keywords

Navigation