Skip to main content

Advertisement

Log in

Genetic studies of myelomeningocele

  • Special Annual Issue
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

Myelomeningocele is one of the major congenital malformations involving the central nervous system. It is caused by a disruption of the neural tube closure, which is completed at 3–4 weeks of gestation.

Discussion

Multidisciplinary approach is necessary to treat and support this malformation which is a huge burden to the patient, family, and the society. This is a characteristic anomaly that it is known that taking folic acid during the periconceptional period, it is possible to reduce the risk of having a neural tube defect (NTD). Although folate fortification had dramatically reduced the incidence, it was not possible to diminish the risk. To date, many studies have been conducted focusing on candidate genes related to folate and glucose metabolism. We will describe a brief review of genetic etiology of candidate genes of metabolic pathways of folate and glucose, animal models of NTDs, and finally recent studies of microRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Au KS, Ashley-Koch A, Northrup H (2010) Epidemiologic and genetic aspects of spina bifida and other neural tube defects. Dev Disabil Res Rev 16:6–15

    Article  PubMed  Google Scholar 

  2. Bak M, Silahtaroglu A, Møller M, Christensen M, Rath MF, Skryabin B, Tommerup N, Kauppinen S (2008) MicroRNA expression in the adult mouse central nervous system. RNA 14:432–444

    Article  PubMed  CAS  Google Scholar 

  3. Beaudin AE, Stover PJ (2007) Folate-mediated one-carbon metabolism and neural tube defects: balancing genome synthesis and gene expression. Birth Defects Res C 81:183–203

    Article  CAS  Google Scholar 

  4. Beaudin AE, Stover PJ (2009) Insights into metabolic mechanisms underlying folate-responsive neural tube defects: a mini review. Birth Defects Res A Clin Mol Teratol 85:274–284

    Article  PubMed  CAS  Google Scholar 

  5. Benetti R, Gonzalo S, Jaco I, Muñoz P, Gonzalez S, Schoeftner S, Murchison E, Andl T, Chen T, Klatt P, Li E, Serrano M, Millar S, Hannon G, Blasco MA (2008) A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Biol 15:268–279

    Article  CAS  Google Scholar 

  6. Berry RJ, Li Z, Erickson JD, Li S, Moore CA, Wang H, Mulinare J, Zhao P, Wong LY, Gindler J, Hong SX, Correa A (1999) Prevention of neural-tube defects with folic acid in China. China–U.S. Collaborative Project for neural tube defect prevention. N Engl J Med 341:1485–1490

    Article  PubMed  CAS  Google Scholar 

  7. Biniszkiewicz D, Gribnau J, Ramsahoye B, Gaudet F, Eggan K, Humpherys D, Mastrangelo MA, Jun Z, Walter J, Jaenisch R (2002) Dnmt1 overexpression causes genomic hypermethylation. Loss of imprinting, and embryonic lethality. Mol Cell Biol 22:2124–2135

    Article  PubMed  CAS  Google Scholar 

  8. Blom HJ (2009) Folic acid, methylation and neural tube closure in humans. Birth Defects Res A Clin Mol Teratol 85:295–302

    Article  PubMed  CAS  Google Scholar 

  9. Blom HJ, Shaw GM, den Heijer G, Finnell RH (2006) Neural tube defects and folate: case far from closed. Nat Rev Neurosci 7:724–731

    Article  PubMed  CAS  Google Scholar 

  10. Blomberg MI, Kallen B (2010) Maternal obesity and morbid obesity: the risk for birth defects in the offspring. Birth Defects Res Part A 88:35–40

    CAS  Google Scholar 

  11. Bohnsack BL, Hirschi KK (2004) Nutrient regulation of cell cycle progression. Annu Rev Nutr 24:433–453

    Article  PubMed  CAS  Google Scholar 

  12. Boyles AL, Billups AV, Deak KL, Siegel DG, Mehltretter L, Slifer SH, Bassuk AG, Kessler JA, Reed MC, Nijhout HF, George TM, Enterline DS, Gilbert JR, Speer MC, NTD Collaborative Group (2006) Neural tube defects and folate pathway genes: family-based association tests of gene–gene and gene–environment interactions. Environ Health Perspect 114:1547–1552

    Article  PubMed  CAS  Google Scholar 

  13. Boyles AL, Hammock P, Speer MC (2005) Candidate gene analysis in human neural tube defects. Am J Med Genet Part C (Semin Med Genet) 135:9–23

    Article  Google Scholar 

  14. Canfield MA, Collins JS, Botto LD, Williams LJ, CT M, Kirby RS, Pearson K, Devine O, Mulinare J, National Birth Defects Prevention Network (2005) Changes in the birth prevalence of selected birth defects after grain fortification with folic acid in the United States: findings from a multi-state population-based study. Birth Defects Res A Clin Mol Teratol 73:679–689

    Article  PubMed  CAS  Google Scholar 

  15. Chen Z, Karaplis AC, Ackerman SL et al (2001) Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity with neuropathology and aortic lipid deposition. Hum Mol Genet 10:433–443

    Article  PubMed  CAS  Google Scholar 

  16. Chi M, Pingsterhaus J, Carayannopoulos M, Moley K (2000) Decreased glucose transporter expression triggers BAX-dependent apoptosis in the murine blastocyst. J Biol Chem 275:40252–40257

    Article  PubMed  CAS  Google Scholar 

  17. Choi S, Frisco S, Keyes MK et al (2005) Folate supplementation increases genomic DNA methylation in the liver of elder rats. Br J Nutr 93:31–35

    Article  PubMed  CAS  Google Scholar 

  18. Copp AJ, Greene NDE, Murdoch JN (2003) The genetic basis of mammalian neurulation. Nat Rev Genet 4:784–793

    Article  PubMed  Google Scholar 

  19. Cormier CM, Au KS, Northrup H (2011) A 10 bp deletion polymorphism and 2 new variations in the GLUT1 gene associated with meningomyelocele. Reprod Sci 18(5):463–468

    Article  PubMed  CAS  Google Scholar 

  20. Correa A, Gilboa SM, Besser LM et al (2008) Diabetes mellitus and birth defects. Am J Obstet Gynecol 199:237.e1–237.e9

    Article  Google Scholar 

  21. Curtin JA, Quint E, Tsipouri V et al (2003) Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr Biol 13:1–20

    Article  Google Scholar 

  22. Davidson CM, Northrup H, King TM et al (2008) Genes in glucose metabolism and association with spina bifida. Reprod Sci 15(1):51–58

    Article  PubMed  CAS  Google Scholar 

  23. De Marco P, Calevo MG, Moroni A, Merello E, Raso A, Finnell RH, Zhu H, Andreussi L, Cama A, Capra V (2003) Reduced folate carrier polymorphism (80A–>G) and neural tube defects. Eur J Hum Genet 11:245–252

    Article  PubMed  Google Scholar 

  24. Deak KL, Boyles AL, Etchevers HC et al (2005) SNPs in the neural cell adhesion molecule 1 gene (NCAM1) may be associated with human neural tube defects. Hum Genet 117:133–142

    Article  PubMed  CAS  Google Scholar 

  25. Duthie SJ, Hawdon A (1998) DNA instability (strand breakage, uracil misincorporation, and defective repair) is increased by folic acid depletion in human lymphocytes in vitro. FASEB J 12:1491–1497

    PubMed  CAS  Google Scholar 

  26. Fan G, Beard C, Chen RZ, Csankovszki G, Sun Y, Siniaia M, Biniszkiewicz D, Bates B, Lee PP, Kuhn R, Trumpp A, Poon C, Wilson CB, Jaenisch R (2001) DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals. J Neurosci 21:788–797

    PubMed  CAS  Google Scholar 

  27. Foshay KM, Gallicano GI (2008) Regulation of Sox2 by STAT3 initiates commitment to the neural precursor cell fate. Stem Cells Dev 17:269–278

    Article  PubMed  CAS  Google Scholar 

  28. Grand Rounds CDC (2010) Additional opportunities to prevent neural tube defects with folic acid fortification. MMWR Morb Mortal Wkly Rep 59:980–984

    Google Scholar 

  29. Greene ND, Stanier P, Copp A (2009) Genetics of human neural tube defects. Hum Mol Genet 18:113–129

    Article  Google Scholar 

  30. Guo X, Geng M, Du G (2005) Glucose transporter 1, distribution in the brain and in neural disorders: its relationship with transport of neuroactive drugs through the blood–brain barrier. Biochem Genet 43:175–187

    Article  PubMed  CAS  Google Scholar 

  31. Han L, Witmer PD, Casey E, Valle D, Sukumar S (2007) DNA methylation regulates microRNA expression. Cancer Biol Ther 6:1–5

    Article  Google Scholar 

  32. Harris MJ, Juriloff DM (2007) Mouse mutants with neural tube closure defects and their role in understanding human neural tube defects. Birth Defects Res A Clin Mol Teratol 79:187–210

    Article  PubMed  CAS  Google Scholar 

  33. Hatakeyama J, Bessho Y, Katoh K et al (2004) Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131:5539–5550

    Article  PubMed  CAS  Google Scholar 

  34. Hatakeyama J, Sakamoto S, Kageyama R (2006) Hes1 and Hes5 regulate the development of the cranial and spinal nerve systems. Dev Neurosci 28:92–101

    Article  PubMed  CAS  Google Scholar 

  35. Heilig CW, Saunders T, Brosius FC et al (2003) Glucose transporter-1-deficient mice exhibit impaired development and deformities that are similar to diabetic embryopathy. Proc Natl Acad Sci U S A 100(26):15613–15618

    Article  PubMed  CAS  Google Scholar 

  36. Hibbard BM, Hibbard ED, Jeffcoate TN (1965) Folic acid and reproduction. Acta Obstet Gynecol Scand 44:375–400

    Article  PubMed  CAS  Google Scholar 

  37. Hitara H, Tomita K, Bessho Y et al (2001) Hes1 and Hes3 regulate maintenance of the isthmic organizer and development in of the mid/hindbrain. EMBO J 20:4454–4466

    Article  Google Scholar 

  38. Honein MA, Paulozzi LJ, Mathews TJ, Erickson JD, Wong LY (2001) Impact of folic acid fortification of the US food supply on the occurrence of neural tube defects. JAMA 285:2981–2986

    Article  PubMed  CAS  Google Scholar 

  39. Humbert PO, Verona R, Trimarchi JM et al (2000) E2F3 is crucial for normal cellular proliferation. Genes Dev 14:690–703

    PubMed  CAS  Google Scholar 

  40. Ivey KN, Muth A, Arnold J et al (2008) MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2:219–229

    Article  PubMed  CAS  Google Scholar 

  41. Jackson M, Krassowska A, Gilbert N, Chevassut T, Forrester L, Ansell J, Ramsahoye B (2004) Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells. Mol Cell Biol 24:8862–8871

    Article  PubMed  CAS  Google Scholar 

  42. Jackson-Grusby L, Beard C, Possemato R, Tudor M, Fambrough D, Csankovszki G, Dausman J, Lee P, Wilson C, Lander E, Jaenisch R (2001) Loss of genomic methylation causes p53 dependent apoptosis and epigenic deregulation. Nat Genet 27:31–39

    Article  PubMed  CAS  Google Scholar 

  43. Keller-Peck C, Mullen RJ (1997) Altered cell proliferation in the spinal cord of mouse neural tube mutants curly tail and Pax3 splotch-delayed. Dev Brain Res 102:177–188

    Article  CAS  Google Scholar 

  44. Kibar Z, Vogan KJ, Groulx N et al (2001) Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant loop-tail. Nat Genet 28:251–255

    Article  PubMed  CAS  Google Scholar 

  45. Kim K, Geng L, Huang S (2003) Inactivation of histone methyltransferase by mutation in human cancers. Cancer Res 63:7619–7623

    PubMed  CAS  Google Scholar 

  46. Krichevsky AM, King KS, Donahue CP et al (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9:1274–1281

    Article  PubMed  CAS  Google Scholar 

  47. Krichevsky AM, Sonntag KC, Isacson O et al (2006) MicroRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24:857–864

    Article  PubMed  CAS  Google Scholar 

  48. Lammer EJ, Sever LE, Oakley GP Jr (1987) Valproic acid. Teratology 35:465–473

    Article  PubMed  CAS  Google Scholar 

  49. Leucht C, Stigloher C, Wizenmann A et al (2008) MictoRNA-9 directs late organizer activity of the midbrain hindbrain boundary. Nat Neurosci 11:641–648

    Article  PubMed  CAS  Google Scholar 

  50. Litrochick L, Chestukhin A, DeCaprio JA (2004) Glycogen synthase kinase 3 phosphorylates RBL2/p130 during quiescence. Mol Cell Biol 24:8970–8980

    Article  Google Scholar 

  51. Lu X, Borchers AG, Jolicoeur C et al (2004) PTK7/CCK-4 is a novel regulator of planar cell polarity in vertebrates. Nature 430:93–98

    Article  PubMed  CAS  Google Scholar 

  52. Machka C, Kersten M, Zobawa M et al (2005) Identification of Dll1(Delta 1) target genes during mouse embryogenesis using differential expression profiling. Gene Exp Patterns 6:94–101

    Article  CAS  Google Scholar 

  53. Maher F, Vannucci SJ, Simpson IA (1994) Glucose transporters in brain. FASEB J 8(13):1003–1101

    PubMed  CAS  Google Scholar 

  54. Marsit CJ, Eddy K, Kelsey KT et al (2006) MicroRNA responses to cellular stress. Cancer Res 66:10843–10848

    Article  PubMed  CAS  Google Scholar 

  55. Martinez CA, Northrup H, Lin JI, Morrison AC, Fletcher JM, Tyerman GH, Au KS (2009) Genetic association study of putative functional single nucleotide polymorphisms of genes in folate metabolism and spina bifida. Am J Obstet Gynecol 201:394.e1–e11

    Article  Google Scholar 

  56. Mathers JC (2005) Reversal of DNA hypomethylation by folic acid supplements: possible role in colorectal prevention. Gut 54:579–581

    Article  PubMed  CAS  Google Scholar 

  57. Matsumoto K, Akazawa S, Ishibashi M et al (1995) Abundant expression of GLUT1 and GLUT3 in rat embryo during the early organogenesis period. Biochem Biophys Res Commun 209(1):95–102

    Article  PubMed  CAS  Google Scholar 

  58. Misaka EA, Alvarez-Saavedra E, Townsend M et al (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5:R68.1–R68.13

    Google Scholar 

  59. Mishra P, Humeniuk R, Mishra PJ et al (2007) A miR-24 microRNA binding-site polymorphism in dihydro-folate reductase gene leads to methotrexate resistance. PNAS 104:13513–13518

    Article  PubMed  CAS  Google Scholar 

  60. Morita Y, Tsutsumi O, Oka Y, Taketani Y (1994) Glucose transporter GLUT1 mRNA expression in the otogeny of glucose incorporation in mouse preimplantation embryos. Biochem Biophys Res Commun 199(3):1525–1531

    Article  PubMed  CAS  Google Scholar 

  61. MRC Vitamin Study Research Group (1991) Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet 338:131–137

    Article  Google Scholar 

  62. Mueckler M, Caruso C, Baldwin SA et al (1985) Sequence and structure of a human glucose transporter. Science 229(4717):941–945, 1985

    Article  PubMed  CAS  Google Scholar 

  63. Mueckler M, Hresko RC, Sato M (1997) Structure, function and biosynthesis of GLUT1. Biochem Soc Trans 25(3):951–954, 1997

    PubMed  CAS  Google Scholar 

  64. Murdoch JN, Doudney K, Paternotte C et al (2001) Severe neural tube defects in the loop-tail mouse result from mutation of Lppl, a novel gene involved in floor plate specification. Hum Mol Genet 10:2593–2601

    Article  PubMed  CAS  Google Scholar 

  65. Murdoch JN, Henderson DJ, Doudney K et al (2003) Disruption of scribble (Scrb 1) causes severe neural tube defects in the circletail mouse. Hum Mol Genet 12:87–98

    Article  PubMed  CAS  Google Scholar 

  66. Narimatsu M, Bose R, Pye M et al (2009) Regulation of planar cell polarity by Smurf ubiquitin ligases. Cell 137:295–307

    Article  PubMed  CAS  Google Scholar 

  67. Ng DP, Canani L, Araki S et al (2002) Minor effect of GLUT1 polymorphisms on susceptibility to diabetic nephropathy in type 1 diabetes. Diabetes 51(7):2264–2269

    Article  PubMed  CAS  Google Scholar 

  68. Parle-McDermott A, Pangilinan F, O'Brien KK, Mills JL, Magee AM, Troendle J, Sutton M, Scott JM, Kirke PN, Molloy AM, Brody LC (2009) A common variant in MTHFD1L is associated with neural tube defects and mRNA splicing efficiency. Hum Mutat 30:1650–1656

    Article  PubMed  CAS  Google Scholar 

  69. Pei L, Liu J, Zhang Y, Ren A (2009) Association of reduced folate carrier gene polymorphism and maternal folic acid use with neural tube defects. Am J Med Genet B Neuropsychiatr Genet 150:874–878

    Google Scholar 

  70. Pogribny IP, Ross SA, Tryndyak VP et al (2006) Histone H3 lysine 9 and H4 lysine 20 trimethylation and expression of Suv4-20h2 and Suv39h 1 histone methyl-transferases in hepatocarcinogenesis induced by methyl deficiency in rats. Carcinogenesis 27:1180–1186

    Article  PubMed  CAS  Google Scholar 

  71. Pufulete M, Al-Ghnaniem R, Khushal A et al (2005) Effect of folic acid supplementation on genomic DNA methylation in patients with colorectal adenoma. Gut 54:648–653

    Article  PubMed  CAS  Google Scholar 

  72. Sahara S, Kawakai Y, Carlos J et al (2007) Sp8 exhibits reciprocal induction with Fgf8 but has an opposing effect on anterior–posterior cortical patterning. Neural Dev 2:10

    Article  PubMed  Google Scholar 

  73. Shang Y, Zhao H, Niu B et al (2008) Correlation of polymorphism of MTHFRs and RFC-1 genes with neural tube defects in China. Birth Defects Res A Clin Mol Teratol 82:3–7

    Article  PubMed  CAS  Google Scholar 

  74. Shaw GM, Lu W, Zhu H, Yang W, Briggs FB, Carmichael SL, Barcellos LF, Lammer EJ, Finnell RH (2009) 118 SNPs of folate-related genes and risks of spina bifida and conotruncal heart defects. BMC Med Genet 85:285–294

    Google Scholar 

  75. Shaw GM, Velie EM, Schaffer D (1996) Risk of neural tube defect-affected pregnancies among obese women. JAMA 275:1093–1096

    Article  PubMed  CAS  Google Scholar 

  76. Sheffield JS, Butler-Koster EL, Casey BM, McIntire DD, Leveno KJ (2002) Maternal diabetes mellitus and infant malformations. Obstet Gynecol 100:925–930

    Article  PubMed  Google Scholar 

  77. Shimogori T, Banuchi V, Ng HY, Strauss JB, Grove EA (2004) Embryonic signaling centers expressing BMP. WNT and FGF proteins interact to pattern the cerebral cortex. Development 131:5639–5647

    Article  PubMed  CAS  Google Scholar 

  78. Shookhoff JM, Gallicano GI (2010) A new perspective on neural tube defects: folic acid and microRNA misexpression. Genesis 48:282–294

    PubMed  CAS  Google Scholar 

  79. Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F, Artus-Revel CG, Zavolan M, Svoboda P, Filipowicz W (2008) MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Biol 15:259–267

    Article  CAS  Google Scholar 

  80. Smithells RW (1985) Vitamins and neural tube defects. Curr Concepts Nutr 14:83–92

    PubMed  CAS  Google Scholar 

  81. Stegmann K, Zieglar A, Ngo ETKM et al (1999) Linkage disequilibrium of MTHFR genotypes 677C/T-1298A/C in the German population and associati0n studies in probands with neural tube defects (NTD). Am J Med Genet 87:23–29

    Article  PubMed  CAS  Google Scholar 

  82. Stiefel D, Shibata T, Meuli M et al (2003) Tethering of the spinal cord in mouse fetuses and neonates with spina bifida. J Neurosurg Spine 99:206–213

    Article  Google Scholar 

  83. Stothard KJ, Tennant PW, Bell R et al (2009) Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. JAMA 301:636–650

    Article  PubMed  CAS  Google Scholar 

  84. Trocino R, Akazawa S, Takino H et al (1994) Cellular-tissue localization and regulation of the GLUT-1 protein in both the embryo and the visceral yolk sac from normal and experimental diabetic rats during the early the postimplantation period. Endocrinology 134(2):869–878

    Article  PubMed  CAS  Google Scholar 

  85. Waller DK, Shaw GM, Rasmussen SA et al (2007) Prepregnancy obesity as a risk factor for structural birth defects. Arch Pediatr Adolesc Med 16:745–750

    Article  Google Scholar 

  86. Weber B, Stresemann C, Brueckner B et al (2007) Methylation of human microRNA genes in normal and neoplastic cell. Cell Cycle 6:1001–1005

    Article  PubMed  CAS  Google Scholar 

  87. Welch C, Chen Y, Stallings RL (2007) MicroRNA-34a functions as a potential tumor suppressor by including apoptosis in neuroblastoma cells. Oncogene 26:5017–5022

    Article  PubMed  CAS  Google Scholar 

  88. Whitehead AS, Gallagher P, Mills JL et al (1995) A genetic defect in 5, 10 methylenetetrahydrofolate reductase in neural tube defects. QJM 88:763–766

    PubMed  CAS  Google Scholar 

  89. Williams LJ, Mai CT, Edmonds LD, Shaw GM, Kirby RS, Hobbs CA, Sever LE, Miller LA, Meaney FJ, Levitt M (2002) Prevalence of spina bifida and anencephaly during the transition to mandatory folic acid fortification in the United States. Teratology 66:33–39

    Article  PubMed  CAS  Google Scholar 

  90. Wong RL, Wlodarczyk BJ, Min KS, Scott ML, Kartiko S, Yu W, Merriweather MY, Vogel P, Zambrowicz BP, Finnell RH (2008) Mouse Fkbp8 activity is required to inhibit cell death and establish dorsoventral patterning in the posterior neural tube. Hum Mol Genet 17:587–601

    Article  PubMed  CAS  Google Scholar 

  91. Wu JI, Rajendra R, Barsi JC et al (2007) Targeted disruption of Mib2 causes exencephaly with a variable penetrance. Genesis 45:722–727

    Article  PubMed  CAS  Google Scholar 

  92. Yamamoto S, Nishimura O, Misaki K et al (2008) Cthrc 1 selectively activates the planar cell polarity pathway of Wnt signaling by stabilizing the Wnt-receptor complex. Dev Cell 15:23–36

    Article  PubMed  CAS  Google Scholar 

  93. Yang X, Tomita T, Wines-Samuelson M et al (2006) Notch1 signaling influences V2 interneuron and motor neuron development in the spinal cord. Dev Neurosci 28:102–117

    Article  PubMed  CAS  Google Scholar 

  94. Yazdy MM, Liu S, Mitchell AA et al (2010) Maternal dietary glycemic intake and the risk of neural tube defects. Am J Epidemiol 171:407–414

    Article  PubMed  Google Scholar 

  95. Ye W, Bouchard M, Stone D, Liu X, Vella F, Lee J, Nakamura H, Ang SL, Busslinger M, Rosenthal A (2001) Distinct regulators control the expression of the mid-hindbrain organizer signal FGF8. Nat Neurosci 4:1175–1181

    Article  PubMed  CAS  Google Scholar 

  96. Zeller K, Rahner-Welsch S, Kuschinsky W (1997) Distribution of Glut1 glucose transporters in different brain structures compared to glucose utilization and capillary density of adult rat brains. J Cereb Blood Flow Metab 17(2):204–209

    Article  PubMed  CAS  Google Scholar 

  97. Zhang HY, Luo GA, Liang QL, Wang Y, Yang HH, Wang YM, Zheng XY, Song XM, Chen G, Zhang T, Wu JX (2008) Neural tube defects and disturbed maternal folate- and homocysteine-mediated one-carbon metabolism. Exp Neurol 212:515–521

    Article  PubMed  CAS  Google Scholar 

  98. Zohn IE, Anderson KV, Niswander L (2007) The Hectd1 ubiquitin ligase is required for development of the head mesenchyme and neural tube closure. Dev Biol 306:208–221

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuaki Shimoji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimoji, K., Kimura, T., Kondo, A. et al. Genetic studies of myelomeningocele. Childs Nerv Syst 29, 1417–1425 (2013). https://doi.org/10.1007/s00381-013-2197-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-013-2197-2

Keywords

Navigation