Skip to main content
Log in

Evaluation of exercise capacity using wave intensity in chronic heart failure with normal ejection fraction

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Impaired exercise capacity has been found in patients with diastolic dysfunction with preserved systolic function. Although conventional transthoracic echocardiography (TTE) provides useful clinical information about systolic and diastolic cardiac function, its capability to evaluate exercise capacity has been controversial. The inertia force of late systolic aortic flow is known to have a tight relationship with left ventricular (LV) performance during the period from near end-systole to isovolumic relaxation. The inertia force and the time constant of LV pressure decay during isovolumic relaxation can be estimated noninvasively using the second peak (W2) of wave intensity (WI), which is measured with an echo-Doppler system. We sought to determine whether W2 is associated with exercise capacity in patients with chronic heart failure with normal ejection fraction (HFNEF) and to compare its ability to predict exercise capacity with parameters obtained by conventional TTE including tissue Doppler imaging. Sixteen consecutive patients with chronic HFNEF were enrolled in this study. Wave intensity was obtained with a color Doppler system for measurement of blood velocity combined with an echo-tracking system for detecting changes in vessel diameter. Concerning conventional TTE, we measured LV ejection fraction (EF), peak velocities of early (E) and late (A) mitral inflow using pulse-wave Doppler, and early (Ea) and late (Aa) diastolic velocities using tissue Doppler imaging. Left ventricular EF, E/A ratio, Ea, and E/Ea ratio did not correlate with exercise capacity, whereas W2 significantly correlated with peak VO2 (r = 0.54, p = 0.03), VE/VCO2 slope (r = −0.53, p = 0.03), and ΔVO2/ΔWR (r = 0.56, p = 0.02). W2 was associated with exercise capacity in patients with chronic HFNEF. In conclusion, W2 is considered to be clinically more useful than conventional TTE indices for evaluating exercise capacity in patients with chronic HFNEF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kitzman DW, Little WC, Brubaker PH, Anderson RT, Hundley WG, Marburger CT, Brosnihan B, Morgan TM, Stewart KP (2002) Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure. JAMA 288:2144–2150

    Article  PubMed  Google Scholar 

  2. Redfield MM, Jacobsen SJ, Burnett JC, Mahoney DW, Bailey KR, Rodeheffer RJ (2003) Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA 289:194–202

    Article  PubMed  Google Scholar 

  3. Beniaminovitz A, Mancini DM (1999) The role of exercise-based prognosticating algorithms in the selection of patients for heart transplantation. Curr Opin Cardiol 4:114–120

    Article  Google Scholar 

  4. Franciosa JA (1984) Exercise testing in chronic congestive heart failure. Am J Cardiol 53:1447–1450

    Article  PubMed  CAS  Google Scholar 

  5. Lipkin DP (1987) The role of exercise testing in chronic heart failure. Br Heart J 58:559–566

    Article  PubMed  CAS  Google Scholar 

  6. Packer M (1990) Abnormalities of diastolic function as a potential cause of exercise intolerance in chronic heart failure. Circulation 81(suppl III):78–86

    Google Scholar 

  7. Little WC, Kitzman DW, Cheng CP (2000) Diastolic dysfunction as a cause of exercise intolerance. Heart Fail Rev 5:301–306

    Article  PubMed  CAS  Google Scholar 

  8. Sugawara M, Uchida K, Kondoh Y, Magosaki N, Niki K, Jones CJH, Sugimachi M, Sunagawa K (1997) Aortic blood momentum—the more the better for the ejecting heart in vivo? Cardiovasc Res 33:433–446

    Article  PubMed  CAS  Google Scholar 

  9. Parker KH, Jones CJH (1990) Forward and backward running waves in the arteries: analysis using the method of characteristics. ASME J Biomech Eng 112:322–326

    Article  CAS  Google Scholar 

  10. Parker KH, Jones CJH, Dawson JR, Gibson DG (1998) What stops the flow of blood from the heart? Heart Vessels 4:241–245

    Article  Google Scholar 

  11. Ramsey MW, Sugawara M (1997) Arterial wave intensity and ventriculoarterial interaction. Heart Vessels 12:128–134

    Article  PubMed  Google Scholar 

  12. Okura H, Inoue H, Tomon M, Nishiyama S, Yoshikawa T, Yoshida K, Yoshikawa J (2000) Impact of Doppler-derived left ventricular diastolic performance on exercise capacity in normal individuals. Am Heart J 139:716–722

    Article  PubMed  CAS  Google Scholar 

  13. Skaluba SJ, Litwin SE (2004) Mechanisms of exercise intolerance: insights from tissue Doppler imaging. Circulation 109:972–977

    Article  PubMed  Google Scholar 

  14. Mullens W, Borowski AG, Curtin RJ, Thomas JD, Tang WH (2009) Tissue Doppler imaging in the estimation of intracardiac filling pressure in decompensated patients with advanced systolic heart failure. Circulation 119:62–70

    Article  PubMed  Google Scholar 

  15. Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, Tajik AJ (2000) Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 102:1788–1794

    Article  PubMed  CAS  Google Scholar 

  16. Carsten T, Walter JP (2009) Doppler echocardiography yields dubious estimates of left ventricular diastolic pressures. Circulation 120:810–820

    Article  Google Scholar 

  17. Cohn JN, Johnson G (1990) Heart failure with normal ejection fraction. The V-HeFT Study. Veterans Administration Cooperative Study Group. Circulation 81(2 Suppl):III 48–III 53

    Google Scholar 

  18. Jones CJH, Sugawara M, Kondoh Y, Uchida K, Parker KH (2002) Compression and expansion wavefront travel in canine ascending aortic flow: wave intensity analysis. Heart Vessels 16:91–98

    Article  PubMed  Google Scholar 

  19. Barnett GO, Mallos AJ, Shapiro A (1961) Relationship of aortic pressure and diameter in the dog. J Appl Pysiol 16:545–548

    CAS  Google Scholar 

  20. Patal DJ, de Freitas FM, Greenfield JC Jr, Fry DL (1963) Relationship of radius to pressure along the aorta in living dogs. J Appl Physiol 18:1111–1117

    Google Scholar 

  21. Sugawara M, Niki K, Furuhata H, Ohnishi S, Suzuki S (2000) Relationship between the pressure and diameter of the carotid artery in humans. Heart Vessels 15:49–51

    Article  PubMed  CAS  Google Scholar 

  22. Harada A, Okada A, Sugawara M, Niki K (2000) Development of a non-invasive real time measurement system of wave intensity. Proc IEEE Ultrasonics Symp 2:1517–1520

    Google Scholar 

  23. Niki K, Sugawara M, Chang D, Harada A, Okada T, Sakai R, Uchida K, Tanaka R, Mumford CE (2002) A new noninvasive measurement system for wave intensity: evaluation of carotid arterial wave intensity and reproducibility. Heart Vessels 17:12–21

    Article  PubMed  Google Scholar 

  24. Yellin EL, Nikolic S, Frater RW (1990) Left ventricular filling dynamics and diastolic function. Prog Cardiovascular Dis 32:247–271

    Article  CAS  Google Scholar 

  25. Florea VG, Mareyev VY, Achilov AA, Popovici MI, Caots AJ, Belenkov YN (1999) Central and peripheral components of chronic heart failure: determinants of exercise tolerance. Int J Cardiol 70:51–56

    Article  PubMed  CAS  Google Scholar 

  26. Franciosa JA, Leddy CL, Wilen M, Schwartz DE (1984) Relation between hemodynamic and ventilatory response in determining exercise capacity in severe congestive heart failure. Am J Cardiol 53:127–134

    Article  PubMed  CAS  Google Scholar 

  27. Vasan RS, Larson MG, Benjamin EJ, Evans JC, Reiss CK, Levy D (1999) Congestive heart failure in subjects with normal versus reduced left ventricular ejection fraction. J Am Coll Cardiol 33:1948–1955

    Article  PubMed  CAS  Google Scholar 

  28. Cowie MR, Wood DA, Coats AJ, Thompson SG, Poole-Wilson PA, Suresh V, Sutton GC (1999) Incidence and aetiology of heart failure: a population-based study. Eur Heart J 20:421–428

    Article  PubMed  CAS  Google Scholar 

  29. Bhatia RS, Tu JV, Lee DS, Austin PC, Fang J, Haouzi A, Gong Y, Liu PP (2006) Outcome heart failure with preserved ejection fraction in a population-based study. N Engl J Med 355:260–269

    Article  PubMed  CAS  Google Scholar 

  30. Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quinones MA (1997) Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressure. J Am Coll Cardiol 30:1527–1533

    Article  PubMed  CAS  Google Scholar 

  31. Witte KK, Nikitin NP, De Silva R, Cleland JG, Clark AL (2004) Exercise capacity and cardiac function assessed by tissue Doppler imaging in chronic heart failure. Heart 90:1144–1150

    Article  PubMed  CAS  Google Scholar 

  32. Ohte N, Narita H, Sugawara M, Niki K, Okada T, Harada A, Hayano J, Kimura G (2003) Clinical usefulness of carotid arterial wave intensity in assessing left ventricular systolic and early diastolic performance. Heart Vessels 18:107–111

    Article  PubMed  Google Scholar 

  33. Sugawara M, Niki K, Ohte N, Okada T, Harada A (2009) Clinical usefulness of wave intensity analysis. Med Biol Eng Comput 47:197–206

    Article  PubMed  Google Scholar 

  34. Larsson M, Bjällmark A, Lind B, Balzano R, Peolsson M, Winter R, Brodin LA (2009) Wave intensity wall analysis: a novel noninvasive method to measure wave intensity. Heart Vessels 24:357–365

    Article  PubMed  Google Scholar 

  35. Bjällmark A, Larsson M, Nowak J, Lind B, Hayashi SY, do Nascimento MM, Riella MC, Seeberger A, Brodin LÅ (2011) Effects of hemodialysis on the cardiovascular system: quantitative analysis using wave intensity wall analysis and tissue velocity imaging. Heart Vessels 26:289–297

    Article  PubMed  Google Scholar 

  36. Liu J, Cao TS, Duan YY, Yang YL, Yuan LJ (2011) Effects of cold pressor-induced sympathetic stimulation on the mechanical properties of common carotid and femoral arteries in healthy males. Heart Vessels 26:214–221

    Article  PubMed  CAS  Google Scholar 

  37. Borlaug BA, Kass DA (2006) Mechanisms of diastolic dysfunction in heart failure. Trends Cardiovasc Med 16:273–279

    Article  PubMed  Google Scholar 

  38. Kawaguchi M, Hay I, Fetics B, Kass DA (2003) Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation 107:714–720

    Article  PubMed  Google Scholar 

  39. Yano M, Kohno M, Kobayashi S, Obayashi M, Seki K, Ohkusa T, Miura T, Fujii T, Matsuzaki M (2001) Influence of timing and magnitude of arterial wave reflection on left ventricular relaxation. Am J Physiol Heart Circ Physiol 280:H1846–H1852

    PubMed  CAS  Google Scholar 

  40. Brutsaert DL, Sys SU (1989) Relaxation and diastole of the heart. Physiol Rev 69:1228–1315

    PubMed  CAS  Google Scholar 

  41. Burkhoff D, de Tombe PP, Hunter WC (1993) Impact of ejection on magnitude and time course of ventricular pressure-generating capacity. Am J Physiol 265:H899–H909

    PubMed  CAS  Google Scholar 

  42. Brutsaert DL, Sys SU (1997) Diastolic dysfunction in heart failure. J Card Fail 3:225–242

    Article  PubMed  CAS  Google Scholar 

  43. Yoshida T, Ohte N, Narita H, Sakata S, Wakami K, Asada K, Miyabe H, Saeki T, Kimura G (2006) Lack of inertia force of late systolic aortic flow is a cause of left ventricular isolated diastolic dysfunction in patients with coronary artery disease. J Am Coll Cardiol 48:983–991

    Article  PubMed  Google Scholar 

  44. Cheng CP, Igarashi Y, Little WC (1992) Mechanism of augmented rate of left ventricular filling during exercise. Circ Res 70:9–19

    Article  PubMed  CAS  Google Scholar 

  45. Niki K, Sugawara M, Chang D, Harada A, Okada T, Tanaka R (2005) Effects of sublingual nitroglycerin on working conditions of the heart and arterial system: analysis using wave intensity. J Med Ultrason 32:145–152

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Takaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takaya, Y., Taniguchi, M., Sugawara, M. et al. Evaluation of exercise capacity using wave intensity in chronic heart failure with normal ejection fraction. Heart Vessels 28, 179–187 (2013). https://doi.org/10.1007/s00380-011-0224-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-011-0224-3

Keywords

Navigation