Skip to main content
Log in

A timescale decomposed threshold regression downscaling approach to forecasting South China early summer rainfall

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A timescale decomposed threshold regression (TSDTR) downscaling approach to forecasting South China early summer rainfall (SCESR) is described by using long-term observed station rainfall data and NOAA ERSST data. It makes use of two distinct regression downscaling models corresponding to the interannual and interdecadal rainfall variability of SCESR. The two models are developed based on the partial least squares (PLS) regression technique, linking SCESR to SST modes in preceding months on both interannual and interdecadal timescales. Specifically, using the datasets in the calibration period 1915–84, the variability of SCESR and SST are decomposed into interannual and interdecadal components. On the interannual timescale, a threshold PLS regression model is fitted to interannual components of SCESR and March SST patterns by taking account of the modulation of negative and positive phases of the Pacific Decadal Oscillation (PDO). On the interdecadal timescale, a standard PLS regression model is fitted to the relationship between SCESR and preceding November SST patterns. The total rainfall prediction is obtained by the sum of the outputs from both the interannual and interdecadal models. Results show that the TSDTR downscaling approach achieves reasonable skill in predicting the observed rainfall in the validation period 1985–2006, compared to other simpler approaches. This study suggests that the TSDTR approach, considering different interannual SCESR-SST relationships under the modulation of PDO phases, as well as the interdecadal variability of SCESR associated with SST patterns, may provide a new perspective to improve climate predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aligo, E. A., W. A. Gallus Jr., and M. Segal, 2009. On the impact of WRF model vertical grid resolution on Midwest summer rainfall forecasts. Wea. Forecasting, 24, 575–594.

    Article  Google Scholar 

  • Butler, N. A., and M. C. Denham, 2000. The peculiar shrinkage properties of partial least squares regression. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 62, 585–593.

    Article  Google Scholar 

  • Cao, X., S. F. Chen, G. H. Chen, W. Chen, and R. G. Wu, 2015. On the weakened relationship between spring Arctic Oscillation and following summer tropical cyclone frequency over the western north Pacific: A comparison between 1968-1986 and 1989-2007. Adv. Atmos. Sci., 32, 1319–1328, doi: 10.1007/s00376-015-4256-y.

    Article  Google Scholar 

  • Cao, X., S. F. Chen, G. H. Chen, and R. G. Wu, 2016: Intensified impact of northern tropical Atlantic SST on tropical cyclogenesis frequency over the western North Pacific after the late 1980s. Adv. Atmos. Sci., doi: 10.1007/s00376-016-5206-z.

    Google Scholar 

  • Chan, J. C. L., and W. Zhou, 2005: PDO, ENSO and the early summer monsoon rainfall over south China. Geophys. Res. Lett., 32, L08810.

    Google Scholar 

  • Chen, S.-F., W. Chen, B. Yu, and H.-F. Graf, 2013a. Modulation of the seasonal footprinting mechanism by the boreal spring Arctic Oscillation. Geophys. Res. Lett., 40, 6384–6389, doi: 10.1002/2013GL058628.

    Article  Google Scholar 

  • Chen, S. F., B. Yu, and W. Chen, 2014. An analysis on the physical process of the influence of AO on ENSO. Climate Dyn., 42, 973–989.

    Article  Google Scholar 

  • Chen, S. F., B. Yu, and W. Chen, 2015a. An interdecadal change in the influence of the spring Arctic Oscillation on the subsequent ENSO around the early 1970s. Climate Dyn., 44, 1109–1126.

    Article  Google Scholar 

  • Chen, S. F., W. Chen, and R. G. Wu, 2015b. An interdecadal change in the relationship between boreal spring Arctic Oscillation and the East Asian Summer Monsoon around the early 1970s. J. Climate, 28, 1527–1542.

    Article  Google Scholar 

  • Chen, W., J. Feng, and R. G. Wu, 2013b. Roles of ENSO and PDO in the link of the East AsianWinter Monsoon to the following Summer Monsoon. J. Climate, 26, 622–635.

    Article  Google Scholar 

  • Collischonn, W., R. Haas, I. Andreolli, and C. E. M. Tucci, 2005. Forecasting River Uruguay flow using rainfall forecasts from a regional weather-prediction model. J. Hydrol., 305, 87–98.

    Article  Google Scholar 

  • Ding, Y. H., Z. Y. Wang, and Y. Sun, 2008. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. Int. J. Climatol., 28, 1139–1161.

    Article  Google Scholar 

  • Duan, W. S., L. Y. Song, Y. Li, and J. Y. Mao, 2013. Modulation of PDO on the predictability of the interannual variability of early summer rainfall over south China. J. Geophys. Res., 118, 13008–13021.

    Google Scholar 

  • Eitzen, Z. A., and D. A. Randall, 1999. Sensitivity of the simulated Asian summer monsoon to parameterized physical processes. J. Geophys. Res., 104, 12177–12191.

    Article  Google Scholar 

  • Gao, H., Y. G. Wang, and J. H. He, 2006: Weakening significance of ENSO as a predictor of summer precipitation in China. Geophys. Res. Lett., 33(9), L09807, doi: 10.1029/2005GL025511.

    Google Scholar 

  • Gershunov, A., and T. P. Barnett, 1998. Interdecadal modulation of ENSO teleconnections. Bull. Amer. Meteor. Soc., 79, 2715–2726.

    Article  Google Scholar 

  • Gong, D.-Y., and C.-H. Ho, 2002: Shift in the summer rainfall over the Yangtze River valley in the late 1970s. Geophys. Res. Lett., 29, 78-1–78-4.

  • Grotch, S. L., and M. C. MacCracken, 1991. The use of general circulation models to predict regional climatic change. J. Climate, 4, 286–303.

    Article  Google Scholar 

  • Guo, Y., J. P. Li, and Y. Li, 2012. A time-scale decomposition approach to statistically downscale summer rainfall over North China. J. Climate, 25, 572–591.

    Article  Google Scholar 

  • Haenlein, M., and A. M. Kaplan, 2004. A beginner’s guide to partial least squares analysis. Understanding Statistics, 3, 283–297.

    Article  Google Scholar 

  • Helland, I. S., 1988. On the structure of partial least squares regression. Communications in Statistics-Simulation and Computation, 17, 581–607.

    Article  Google Scholar 

  • Huang, R. H., and Y. F. Wu, 1989. The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci., 6, 21–32, doi: 10.1007/BF02656915.

    Article  Google Scholar 

  • Huang, R. H., J. L. Chen, G. Huang, and Q. L. Zhang, 2006. The quasi-biennial oscillation of summer monsoon rainfall in China and its cause. Chinese Journal of Atmospheric Sciences, 30, 545–560. (in Chinese)

    Google Scholar 

  • Kalnay, E., and Coauthors, 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472, doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Article  Google Scholar 

  • Lau, K. M., and H. Y. Weng, 2001. Coherent modes of global SST and summer rainfall over China: An assessment of the regional impacts of the 1997-98 El Niño. J. Climate, 14, 1294–1308.

    Article  Google Scholar 

  • Li, Y., and I. Smith, 2009. A statistical downscaling model for southern Australia winter rainfall. J. Climate, 22, 1142–1158.

    Article  Google Scholar 

  • Liu, Y., and K. Fan, 2012a. Improve the prediction of summer precipitation in the Southeastern China by a hybrid statistical downscaling model. Meteor. Atmos. Phys., 117, 121–134.

    Article  Google Scholar 

  • Liu, Y., and K. Fan, 2012b: Prediction of spring precipitation in China using a downscaling approach. Meteor. Atmos. Phys., 118: 79–93.

    Article  Google Scholar 

  • Liu, Y., and K. Fan. 2014: An application of hybrid downscaling model to forecast summer precipitation at stations in China. Atmospheric Research, 143: 17–30.

    Article  Google Scholar 

  • Mantua, N. J., and S. R. Hare, 2002. The Pacific decadal oscillation. Journal of Oceanography, 58, 35–44.

    Article  Google Scholar 

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 1069–1079.

    Article  Google Scholar 

  • Mao, J. Y., J. C. L. Chan, and G. X. Wu, 2011. Interannual variations of early summer monsoon rainfall over South China under different PDO backgrounds. Int. J. Climatol., 31, 847–862.

    Article  Google Scholar 

  • Martin, G. M., 1999. The simulation of the Asian summer monsoon, and its sensitivity to horizontal resolution, in the UK meteorological office unified model. Quart. J. Roy. Meteor. Soc., 125, 1499–1525.

    Article  Google Scholar 

  • Nitta, T., and Z.-Z. Hu, 1996. Summer climate variability in China and its association with 500 hPa height and tropical convection. J. Meteor. Soc. Japan Ser. II, 74, 425–445.

    Google Scholar 

  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999. Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319–324.

    Article  Google Scholar 

  • Sahai, A. K., A. M. Grimm, V. Satyan, and G. B. Pant, 2003. Longlead prediction of Indian summer monsoon rainfall from global SST evolution. Climate Dyn., 20, 855–863.

    Google Scholar 

  • Smith, T. M., and R. W. Reynolds, 2004. Improved extended reconstruction of SST (1854-1997). J. Climate, 17, 2466–2477.

    Article  Google Scholar 

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008. Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296.

    Article  Google Scholar 

  • Smoliak, B. V., J. M. Wallace, M. T. Stoelinga, and T. P. Mitchell, 2010: Application of partial least squares regression to the diagnosis of year-to-year variations in Pacific Northwest snowpack and Atlantic hurricanes. Geophys. Res. Lett., 37, L03801, doi: 10.1029/2009GL041478.

    Article  Google Scholar 

  • Sun, J. Q., and H. J. Wang, 2012: Changes of the connection between the summer North Atlantic Oscillation and the East Asian summer rainfall. J. Geophys. Res., 117, D08110, doi: 10.1029/2012JD017482.

    Google Scholar 

  • Sun, J. Q., and H. P. Chen, 2012. A statistical downscaling scheme to improve global precipitation forecasting. Meteor. Atmos. Phys., 117, 87–102.

    Article  Google Scholar 

  • Tao, S. Y., 1987. A review of recent research on the East Asian summer monsoon in China. J. Meteor. Soc. Japan, 70, 373–396.

    Google Scholar 

  • Thompson, D. W. J., and J. M. Wallace, 1998. The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300.

    Article  Google Scholar 

  • Torrence C., and P. J. Webster, 1999. Interdecadal changes in the ENSO-monsoon system. J. Climate, 12, 2679–2690.

    Article  Google Scholar 

  • Wang, B., Lin Ho, Y. S. Zhang, and M. M. Lu, 2004. Definition of South China Sea monsoon onset and commencement of the East Asia summer monsoon. J. Climate, 17, 699–710.

    Article  Google Scholar 

  • Wang, B., R. G. Wu, and X. Fu, 2000. Pacific-east Asian teleconnection: How does ENSO affect east Asian climate? J. Climate, 13, 1517–1536.

    Article  Google Scholar 

  • Wang, H. J., 2001: The weakening of the Asian monsoon circulation after the end of 1970’s. Adv. Atmos. Sci., 18(3), 376–386, doi: 10.1007/BF02919316.

    Article  Google Scholar 

  • Wang, H. J., 2002: The instability of the East Asian summer monsoon-ENSO relations. Adv. Atmos. Sci., 19(1), 1–11, doi: 10.1007/s00376-002-0029-5.

    Article  Google Scholar 

  • Wang, L., W. Chen, R. H. Huang, 2008: Interdecadal modulation of PDO on the impact of ENSO on the east Asian winter monsoon. Geophys. Res. Lett., 35, L20702, doi: 10.1029/2008GL035287.

    Article  Google Scholar 

  • Wilby, R. L., 1998. Statistical downscaling of daily precipitation using daily airflow and seasonal teleconnection indices. Climate Research, 10, 163–178.

    Article  Google Scholar 

  • Wu, R. G., and B. Wang, 2002. A contrast of the East Asian summer monsoon-ENSO relationship between 1962-77 and 1978- 93. J. Climate, 15, 3266–3279.

    Article  Google Scholar 

  • Wu, R.G., S. Yang, Z. P. Wen, G. Huang, and K. M. Hu, 2012. Interdecadal change in the relationship of southern China summer rainfall with tropical Indo-Pacific SST. Theor. Appl. Climatol., 108, 119–133.

    Article  Google Scholar 

  • Wu, Z. W., H. Lin, Y. Li, and Y. M. Tang, 2013. Seasonal prediction of killing-frost frequency in South-Central Canada during the cool/overwintering-crop growing season. Journal of Applied Meteorology and Climatology, 52, 102–113.

    Article  Google Scholar 

  • Zhang, H. Q., J. Qin, and Y. Li, 2011. Climatic background of cold and wet winter in southern China: part I observational analysis. Climate Dyn., 37, 2335–2354.

    Article  Google Scholar 

  • Zhao, P., Z. J. Zhou, and J. P. Liu, 2007. Variability of Tibetan spring snow and its associations with the hemispheric extratropical circulation and East Asian summer monsoon rainfall: An observational investigation. J. Climate, 20, 3942–3955.

    Article  Google Scholar 

  • Zhou, W., C. Li, and J. C. L. Chan, 2006. The interdecadal variations of the summer monsoon rainfall over South China. Meteor. Atmos. Phys., 93, 165–175.

    Article  Google Scholar 

  • Zhu, C.-W., C.-K. Park, W.-S. Lee, and W.-T. Yun, 2008. Statistical downscaling for multi-model ensemble prediction of summer monsoon rainfall in the Asia-Pacific region using geopotential height field. Adv. Atmos. Sci., 25, 867–884, doi: 10.1007/s00376-008-0867-x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wansuo Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, L., Duan, W., Li, Y. et al. A timescale decomposed threshold regression downscaling approach to forecasting South China early summer rainfall. Adv. Atmos. Sci. 33, 1071–1084 (2016). https://doi.org/10.1007/s00376-016-5251-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-016-5251-7

Key words

Navigation