Skip to main content
Log in

Ten-year climatological features and air origin of midlatitude double tropopauses

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The 10-year climatological features related to midlatitude double tropopause events (DTs) are examined using ERAInterim data from 2003 to 2012. The analysis is based on tropopauses defined by lapse rate. Results show that DTs are permanent or semi-permanent in the midlatitudes, and high DT frequency bands move poleward in winter and equatorward in summer, which is consistent with the seasonal movement of the subtropical jet. Based on our statistics, the second tropopause is found at about 100 hPa in the subtropics and at slightly lower altitudes in sub-polar regions. The thickness between the first and second tropopause is smaller in the subtropics and increases with latitude. Next, the origin of air sandwiched between the first and second tropopause of DTs is studied with a revised version of the UK Universities Global Atmospheric Modelling Programme Offline Trajectory Code (Version 3) diabatic trajectory model. The results show that, in the lower or middle troposphere, air is transported into the DTs from lower latitudes, mainly in the tropics. The dominant source regions are mainly areas of deep convection and steep orography, e.g., the western Pacific and Himalayan Mountains, and they show strong seasonality following the seasonal shift of these strong upwelling regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Añel, J. A., J. C. Antuña, L. de la Torre, R. Nieto, and L. Gimeno, 2007: Global statistics of multiple tropopauses from the IGRA database. Geophys. Res. Lett., 34(6), L06709, doi: 10.1029/2006GL029224.

    Google Scholar 

  • Añel, J. A., J. C. Antuña, L. de la Torre, J. M. Castanheira, and L. Gimeno, 2008: Climatological features of global multiple tropopause events. J. Geophys. Res., 113, D00B08, doi: 10.1029/2007JD009697.

    Google Scholar 

  • Añel, J. A., L. de la Torre, and L. Gimeno, 2012: On the origin of the air between multiple tropopauses at midlatitudes. The Scientific World Journal, 2012, 191028, doi: 10.1100/2012/191028.

    Article  Google Scholar 

  • Anthes, R. A., and Coauthors, 2008: The COSMIC/FORMOSAT- 3 mission: Early results. Bull. Amer. Meteor. Soc., 89(3), 313–333, doi: 10.1175/BAMS-89-3-313.

    Article  Google Scholar 

  • Berthet, G., J. G. Esler, and P. H. Haynes, 2007: A Lagrangian perspective of the tropopause and the ventilation of the lowermost stratosphere. J. Geophys. Res., 112, D18102, doi: 10.1029/2006JD008295.

    Article  Google Scholar 

  • Biondi, R., T. Neubert, S. Syndergaard, and J. Nielsen, 2011: Measurements of the upper troposphere and lower stratosphere during tropical cyclones using the GPS radio occultation technique. Adv. Space Res., 47(2), 348–355.

    Article  Google Scholar 

  • Bracci, A., and Coauthors, 2012: Transport of stratospheric air masses to the Nepal climate observatory-pyramid (Himalaya; 5079 m MSL): A synoptic-scale investigation. J. Appl. Meteorol. Clim., 51(8), 1489–1507, doi: 10.1175/JAMC-D-11-0154.1.

    Article  Google Scholar 

  • Castanheira, J. M., and L. Gimeno, 2011: Association of double tropopause events with baroclinic waves. J. Geophys. Res., 116, D19113, doi: 10.1029/2011JD016163.

    Article  Google Scholar 

  • Castanheira, J. M., T. R. Peevey, C. A. F. Marques, and M. A. Olsen, 2012: Relationships among Brewer-Dobson circulation, double tropopauses, ozone and stratospheric water vapour. Atmos. Chem. Phys., 12, 12391–12421.

    Article  Google Scholar 

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc. 137, 553–597. doi: 10.1002/qj.828.

    Article  Google Scholar 

  • Fueglistaler, S., H. Wernli, and T. Peter, 2004: Tropical troposphereto- stratosphere transport inferred from trajectory calculations. J. Geophys. Res., 109(D3), D03108, doi: 10.1029/2003JD004069.

    Google Scholar 

  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed., Burlington, San Diego and London, Academic Press, 535 pp.

    Google Scholar 

  • Homeyer, C. R., K. P. Bowman, L. L. Pan, E. L. Atlas, R.-S. Gao, and T. L. Campos, 2011: Dynamical and chemical characteristics of tropospheric intrusions observed during START08. J. Geophys. Res., 116, D06111, doi: 10.1029/2010JD015098.

    Google Scholar 

  • Horinouchi, T., F. Sassi, and B. A. Boville, 2000: Synoptic-scale Rossby waves and the geographic distribution of lateral transport routes between the tropics and the extratropics in the lower stratosphere. J. Geophys. Res., 105(D21), 26579–26592, doi: 10.1029/2000JD900281.

    Article  Google Scholar 

  • Lamarque, J.-F., and P. G. Hess, 1994: Cross-tropopause mass exchange and potential vorticity budget in a simulated tropopause folding. J. Atmos. Sci., 51(15), 2246–2269, doi: 10.1175/1520-0469051.

    Article  Google Scholar 

  • Manney, G. L., M. I. Hegglin, W. H. Daffer, M. J. Schwartz, M. L. Santee, and S. Pawson, 2014: Climatology of upper tropospheric-lower stratospheric (UTLS) jets and tropopauses in MERRA. J. Climate, 27(9), 3248–3271.

    Article  Google Scholar 

  • McIntyre, M. E., and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593–600, doi: 10.1038/305593a0.

    Article  Google Scholar 

  • Methven, J., 1997: Offline trajectories: Calculation and accuracy UGAMP Tech. Rep. 44, Dep. of Meteorol., Univ. of Reading, Reading, U. K., 18 pp.

    Google Scholar 

  • Newman, P. A., and M. R. Schoeberl, 1995: A reinterpretation of the data from the NASA Stratosphere-Troposphere exchange project. Geophys. Res. Lett., 22(18), 2501–2504, doi: 10.1029/95GL02220.

    Article  Google Scholar 

  • Olsen, M. A., A. R. Douglass, P. A. Newman, J. C. Gille, B. Nardi, V. A. Yudin, D. E. Kinnison, and R. Khosravi, 2008: HIRDLS observations and simulation of a lower stratospheric intrusion of tropical air to high latitudes. Geophys. Res. Lett., 35(21), L21813. doi: 10.1029/2008GL035514.

    Article  Google Scholar 

  • Olsen, M. A., A. R. Douglass, M. R. Schoeberl, J. M. Rodriquez, and Y. Yoshida, 2010: Interannual variability of ozone in the winter lower stratosphere and the relationship to lamina and irreversible transport. J. Geophys. Res., 115, D15305, doi: 10.1029/2009JD013004

    Article  Google Scholar 

  • Pan, L. L., and Coauthors, 2009: Tropospheric intrusions associated with the secondary tropopause. J. Geophys. Res., 114, D10302, doi: 10.1029/2008JD011374.

    Article  Google Scholar 

  • Pan, L. L., and Coauthors, 2010: The stratosphere-troposphere analyses of regional transport 2008 experiment. Bull. Amer. Meteor. Soc., 91(3), 327–342, doi: 10.1175/2009BAMS 2865.1.

    Article  Google Scholar 

  • Pan, L. L., and L. A. Munchak, 2011: Relationship of cloud top to the tropopause and jet structure from CALIPSO data. J. Geophys. Res., 116(D12), D12201, doi: 10.1029/2010JD015462.

    Article  Google Scholar 

  • Peevey, T. R., J. C. Gille, C. E. Randall, and A. Kunz, 2012: Investigation of double tropopause spatial and temporal global variability utilizing High Resolution Dynamics Limb Sounder temperature observations. J. Geophys. Res., 117, D01105, doi: 10.1029/2011JD016443.

    Google Scholar 

  • Peevey, T. R., J. C. Gille, C. R. Homeyer, and G. L. Manney, 2014: The double tropopause and its dynamical relationship to the tropopause inversion layer in storm track regions. J. Geophys. Res., 119(17), 10194–10212.

    Google Scholar 

  • Ploeger, F., P. Konopka, G. Günther, J.-U. Grooß, and R. Müller, 2010: Impact of the vertical velocity scheme on modeling transport in the tropical tropopause layer. J. Geophys. Res., 115, D03301, doi: 10.1029/2009jd012023.

    Google Scholar 

  • Ploeger, F., and Coauthors, 2011: Insight from ozone and water vapour on transport in the tropical tropopause layer (TTL). Atmos. Chem. Phys., 11, 407–419, doi: 10.5194/acp-11-407-2011.

    Article  Google Scholar 

  • Randel, W. J., D. J. Seidel, and L. L. Pan, 2007: Observational characteristics of double tropopauses. J. Geophys. Res., 112(D7), D07309, doi: 10.1029/2006jd007904.

    Google Scholar 

  • Scaife, A. A., N. Butchart, D. R. Jackson, and R. Swinbank, 2003: Can changes in ENSO activity help to explain increasing stratospheric water vapor? Geophys. Res. Lett., 30, doi: 10.1029/2003GL017591.

    Google Scholar 

  • Schmidt, T., G. Beyerle, S. Heise, J. Wickert, and M. Rothacher, 2006: A climatology of multiple tropopauses derived from GPS radio occultations with CHAMP and SAC-C. Geophys. Res. Lett., 33(4), L04808, doi: 10.1029/2005GL024600.

    Google Scholar 

  • Simmons, S. M., S. M. Uppala, D. Dee, and S. Kobayashi, 2006: ERA-interim: New ECMWF reanalysis products from 1989 onward. ECMWF Newsletter, 110, 25–35.

    Google Scholar 

  • Skerlak, B., M. Sprenger, and H. Wernli, 2013: A global climatology of stratosphere-troposphere exchange using the ERAinterim dataset from 1979 to 2011. Atmos. Chem. Phys., 13(5), 11537–11595, doi: 10.5194/acpd-13-11537-2013.

    Article  Google Scholar 

  • Sprenger, M., M. Croci-Maspoli, and H. Wernli, 2003: Tropopause folds and cross-tropopause exchange: A global investigation based upon ECMWF analyses for the time period March 2000 to February 2001. J. Geophys. Res., 108(D12), 8518, doi: 10.1029/2002JD002587.

    Article  Google Scholar 

  • Stohl, A., 1998: Computation, accuracy and applications of trajectories-A review and bibliography. Atmos. Environ., 32(6), 947–966, doi: 1016/s1352-2310(97)00457-3.

    Article  Google Scholar 

  • Thuburn, J., and G. C. Craig, 2002: On the temperature structure of the tropical substratosphere. J. Geophys. Res., 107(D2), ACL 10-1–ACL10-10, doi: 10.1029/2001jd000448.

    Google Scholar 

  • Vaughan, G., and C. Timmis, 1998: Transport of near-tropopause air into the lower midlatitude stratosphere. Quart. J. Roy. Meteor. Soc., 124(549), 1559–1578, doi: 10.1256/smsqj.54909.

    Article  Google Scholar 

  • Vogel, B., and Coauthors, 2011: Transport pathways and signatures of mixing in the extratropical tropopause region derived from Lagrangian model simulations. J. Geophys. Res., 116, D05306, doi: 10.1029/2010jd014876.

    Google Scholar 

  • Wang, S., and L. M. Polvani, 2011: Double tropopause formation in idealized baroclinic life cycles: The key role of an initial tropopause inversion layer. J. Geophys. Res., 116, D05108, doi: 10.1029/2010jd015118.

    Google Scholar 

  • Waugh, D. W., and L. M. Polvani, 2000: Climatology of intrusions into the tropical upper troposphere. Geophys. Res. Lett., 27(23), 3857–3860, doi: 10.1029/2000gl012250.

    Article  Google Scholar 

  • WMO, 1957: Meteorology—A three-dimensional science: Second session of the Commission for Aerology. WMO Bulletin, 4, 138–.

  • Yamanaka, M. D., 1992: Formation of multiple tropopause and stratospheric inertio-gravity waves. Advances in Space Research, 12(10), 181–190.

    Article  Google Scholar 

  • Yamanaka, M. D., S. Ogino, S. Kondo, T. Shimomai, S. Fukao, Y. Shibagaki, Y. Maekawa, and I. Takayabu, 1996: Inertiogravity waves and subtropical multiple tropopauses: Vertical wavenumber spectra of wind and temperature observed by the MUradar, radiosondes and operational rawinsonde network. J. Atmos. Terr. Phys., 58(6), 785–805.

    Article  Google Scholar 

  • Zängl, G., and K. P. Hoinka: 2001: The tropopause in the polar regions. J. Climate, 14(14), 3117–3139.

    Article  Google Scholar 

  • Zeng, G., and J. A. Pyle, 2005: Influence of El Niño Southern Oscillation on stratosphere/troposphere exchange and the global tropospheric ozone budget. Geophys. Res. Lett., 32, L01814, doi: 10.1029/2004gl021353.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daren Lü.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Lü, D. Ten-year climatological features and air origin of midlatitude double tropopauses. Adv. Atmos. Sci. 32, 1592–1602 (2015). https://doi.org/10.1007/s00376-015-5036-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-015-5036-4

Keywords

Navigation