Skip to main content
Log in

Effects of NO x and VOCs from five emission sources on summer surface O3 over the Beijing-Tianjin-Hebei region

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The impacts of emissions from industry, power plant, transportation, residential, and biogenic sources on daily maximum surface ozone (O3DM) over the Beijing-Tianjin-Hebei (BTH) region in North China in the summer of 2007 were examined in a modeling study. The modeling system consisted of the Weather Research and Forecasting (WRF) model and the photochemical dispersion model, CAMx. The factor separation technique (FST) was used to quantify the effect of individual emission source types and the synergistic interactions among two or more types. Additionally, the effectiveness of emission reduction scenarios was explored. The industry, power plant, and transportation emission source types were found to be the most important in terms of their individual effects on O3DM. The key contributor to high surface O3 was power plant emissions, with a peak individual effect of 40 ppbv in the southwestern BTH area. The individual effect from the biogenic emission category was quite low. The synergistic effects from the combinations of each pair of anthropogenic emission types suppressed O3 formation, while the synergistic effects for combinations of three were favorable for O3 formation when the industrial and power plant emission source types coexisted. The quadruple synergistic effects were positive only with the combination of power plant, transportation, residential, and biogenic sources, while the quintuple synergistic effect showed only minor impacts on O3DM concentrations. A 30% reduction in industrial and transportation sources produced the most effective impacts on O3 concentrations, with a maximum decrease of 20 ppbv. These results suggested that the synergistic impacts among emission source types should be considered when formulating emission control strategies for O3 reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, J. L., Z. W. Han, Z. F. Wang, M. Y. Huang, S. W. Tao, and X. J. Cheng, 1999: Impacts of changes in the concentration of nonmethane hydrocarbon (NMHC) and NOx on amount of ozone formation. Chinese J. Atmos. Sci., 23(6), 753–761. (in Chinese)

    Google Scholar 

  • An, J. L., Y. S. Wang, F. K. Wu, and B. Zhu, 2012a: Characterizations of volatile organic compounds during high ozone episodes in Beijing, China. Environmental Monitoring and Assessment, 184, 1879–1889.

    Article  Google Scholar 

  • An, J. L, J. Li, W. Zhang, Y. Chen, Y. Qu, and W. L. Xiang, 2012b: Simulation of transboundary transport fluxes of air pollutants among Beijing, Tianjin, and Hebei Province of China. Acta Scientiae Circumstantiae, 32(11), 2684–2692. (in Chinese)

    Google Scholar 

  • Beijing Bureau of Statistics, 2007: Beijing Statistics Yearbook 2007. China Statistics Press, Beijing. (in Chinese)

    Google Scholar 

  • Cai, H., and S. D. Xie, 2011: Traffic-related air pollution modeling during the 2008 Beijing Olympic Games: The effects of an odd-even day traffic restriction scheme. Science of the Total Environment, 409, 1935–1948.

    Article  Google Scholar 

  • Castell, N., E. Mantilla, A. F. Stein, R. Salvador, and M. Millán, 2011: Simulation and evaluation of control strategies for ozone reduction in a complex terrain in southwestern Spain. Environmental Modeling & Assessment, 16, 565–576.

    Article  Google Scholar 

  • Chan, C. K., and X. H. Yao, 2008: Air pollution in mega cities in China. Atmos. Environ., 42, 1–42.

    Article  Google Scholar 

  • Chou, C. C. K., C.-Y. Tsai, C.-J. Shiu, S. C. Liu, and T. Zhu, 2009: Measurement of NOy during campaign of air quality research in Beijing 2006 (CARE Beijing-2006): Implications for the ozone production efficiency of NOx. J. Geophys. Res., 114, D00G01, doi: 10.1029/2008JD010446.

    Google Scholar 

  • Cohan, D. S., A. Hakami, Y. T. Hu, and A. G. Russell, 2005: Nonlinear response of ozone to emissions: Source apportionment and sensitivity analysis. Environ. Sci. Technol., 39, 6739–6748.

    Article  Google Scholar 

  • Diem, J. E., 2000: Comparisons of weekday-weekend ozone: importance of biogenic volatile organic compound emissions in the semi-arid southwest USA. Atmos. Environ., 34, 3445–3451.

    Article  Google Scholar 

  • Duan, J. C., J. H. Tan, L. Yang, S. Wu, and J. M. Hao, 2008: Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmospheric Research, 88, 25–35.

    Article  Google Scholar 

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale twodimensional model. J. Atmos. Sci., 46, 3077–3107.

    Article  Google Scholar 

  • Emmons, L. K., and Coauthors, 2010: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geoscientific Model Development, 3, 43–67.

    Article  Google Scholar 

  • ENVIRON, 2011: User’s guide. Comprehensive air quality model with extensions version 5. 40. ENVIRON International Corporation, Novato, California. [Available online at http://www.camx.com.]

    Google Scholar 

  • Gao, Y., and M. G. Zhang, 2012: Sensitivity analysis of surface ozone to emission controls in Beijing and its neighboring area during the 2008 Olympic Games. Journal of Environmental Sciences, 24, 50–61.

    Article  Google Scholar 

  • Guenther, A., and Coauthors, 1995: A global model of natural volatile organic compound emissions. J. Geophys. Res., 100, 8873–8892.

    Article  Google Scholar 

  • Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron, 2006: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry & Physics Discussions, 6, 107–173.

    Article  Google Scholar 

  • Guttikunda, S. K., and Coauthors, 2005: Impacts of Asian megacity emissions on regional air quality during spring 2001. J. Geophys. Res., 110, D20301, doi:10.1029/2004JD004921.

    Article  Google Scholar 

  • Han, Z. W., H. Ueda, and K. Matsuda, 2005: Model study of the impact of biogenic emission on regional ozone and the effectiveness of emission reduction scenarios over eastern China. Tellus B, 57, 12–27.

    Article  Google Scholar 

  • Hao, J. M., D. Q. He, Y. Wu, L. X. Fu, and K. B. He, 2000: A study of the emission and concentration distribution of vehicular pollutants in the urban area of Beijing. Atmos. Environ., 34, 453–465.

    Article  Google Scholar 

  • Harris, L. M., and D. R. Durran, 2010: An idealized comparison of one-way and two-way grid nesting. Mon. Wea. Rev., 138, 2174–2187.

    Article  Google Scholar 

  • He, S. Z., and Coauthors, 2010: Measurement of atmospheric hydrogen peroxide and organic peroxides in Beijing before and during the 2008 Olympic Games: Chemical and physical factors influencing their concentrations. J. Geophys. Res., 115, D17307, doi: 10.1029/2009JD013544.

    Article  Google Scholar 

  • IPCC, 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Houghton et al., Eds., Cambridge Univ. Press, New York, USA, 881 pp.

  • Hong, S. Y., and H. L. Pan, 1986: Nonlocal boundary layer vertical diffusion in a medium range forecast model. Mon. Wea. Rev., 124, 2322–2339.

    Article  Google Scholar 

  • Huang, Q., S. Y. Cheng, J. B. Li, D. S. Chen, H. Y. Wang, and X. R. Guo, 2012: Assessment of PM10 emission sources for priority regulation in Urban air quality management using a new coupled MM5-CAMx-PSAT modeling approach. Environmental Engineering Science, 29, 343–349.

    Article  Google Scholar 

  • Jiang, W. H., and J. Z. Ma, 2006: Implementation of NOx and O3 key source tracing method in a regional chemical transport model. Acta Meteorologica Sinica, 64, 281–292. (in Chinese)

    Google Scholar 

  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The representation of cumulus convection in numerical models. Meteor. Monogr., 24, 165–170.

    Google Scholar 

  • Li, Y., A. H. Lau, J. C.-H. Fung, J. Y. Zheng, L. J. Zhong, and P. K. K. Louie, 2012: Ozone source apportionment (OSAT) to differentiate local regional and super-regional source contributions in the Pearl River Delta region, China. J. Geophys. Res., 117(D15305), doi: 10.1029/2011JD017340.

    Google Scholar 

  • Lin, X., M. Trainer, and S. C. Liu, 1988: On the nonlinearity of the tropospheric ozone production. J. Geophys. Res., 93, 15 879–15 888.

    Article  Google Scholar 

  • Liu, F., Y. G. Zhu, and Y. Zhao, 2008: Contribution of motor vehicle emissions to surface ozone in urban areas: A case study in Beijing. International Journal of Sustainable Development and World Ecology, 15, 345–349.

    Article  Google Scholar 

  • Ma, J., and J. A. van Aardenne, 2004: Impact of different emission inventories on simulated tropospheric ozone over China: A regional chemical transport model evaluation. Atmos. Chem. Phys., 4, 877–887.

    Article  Google Scholar 

  • Ma, J. Z., and Coauthors, 2012: The IPAC-NC field campaign: a pollution and oxidization pool in the lower atmosphere over Huabei, China. Atmos. Chem. Phys, 12, 3883–3908.

    Article  Google Scholar 

  • McKeen, S. A., E.-Y. Hsie, and S. C. Liu, 1991: A study of the dependence of rural ozone on ozone precursors in the eastern United States. J. Geophys. Res., 96, 15 377–15 394.

    Article  Google Scholar 

  • Misenis, C., and Y. Zhang, 2010: An examination of sensitivity of WRF/Chem predictions to physical parameterizations, horizontal grid spacing, and nesting options. Atmospheric Research, 97, 315–334.

    Article  Google Scholar 

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 663–16 682.

    Article  Google Scholar 

  • NARSTO, 2000: An assessment of tropospheric ozone pollution-A North American perspective. The NARSTO Synthesis Team, Palo Alto, CA. [Available online at http://www.narsto.org/sites/narsto-dev.ornl.gov/files/Chapter1.pdf.]

    Google Scholar 

  • Peng, Y. P., K.-S. Chen, H.-K. Wang, C.-H. Lai, M.-H. Lin, and C.-H. Lee, 2011: Applying model simulation and photochemical indicators to evaluate ozone sensitivity in southern Taiwan. Journal of Environmental Sciences, 23, 790–797.

    Article  Google Scholar 

  • Qu, Y., and J. L. An, 2009: Total and synergistic impacts of anthropogenic and biogenic emissions on ozone-Examples in East Asia in spring and summer. China Environmental Science, 29(3), 337–344.

    Google Scholar 

  • Qu, Y., J. L. An, H. Zhou, and X. F. Ye, 2009: Synergistic impacts of anthropogenic and biogenic emissions on spring surface ozone in East Asia. Chinese J. Atmos. Sci., 33(4), 670–680.

    Google Scholar 

  • Qu, Y., J. L. An, and J. Li, 2013: Synergistic impacts of anthropogenic and biogenic emissions on summer surface O3 in East Asia. Journal of Environmental Sciences, 25(3), 520–530.

    Article  Google Scholar 

  • Shao, M., M. P. Zhao, Y. H. Zhang, L. X. Peng, and J. L. Li, 2000: Biogenic VOCs emissions and its impact on ozone formation in major cities of China. Journal of Environmental Science and Health (A), 35, 1941–1950.

    Article  Google Scholar 

  • Shao, M., S. H. Lu, Y. Liu, X. Xie, C. C. Chang, S. Huang, and Z. M. Chen, 2009: Volatile organic compounds measured in summer in Beijing and their role in ground-level ozone formation. J. Geophys. Res., 114, D00G06, doi: 10.1029/2008jd010863.

    Google Scholar 

  • Shao, M., B. Wang, S. H. Lu, B. Yuan, and M. Wang, 2011: Effects of Beijing Olympics control measures on reducing reactive hydrocarbon species. Environ. Sci. Technol., 45, 514–519.

    Article  Google Scholar 

  • Shen, J., X. S. Wang, J. F. Li, Y. P. Li, and Y. H. Zhang, 2011: Evaluation and intercomparison of ozone simulations by Models-3/CMAQ and CAMx over the Pearl River Delta. Science China: Chemistry, 54, 1789–1800.

    Article  Google Scholar 

  • Song, Y., M. Shao, Y. Liu, S. H. Lu, W. Kuster, P. Goldan, and S. D. Xie, 2007: Source apportionment of ambient volatile organic compounds in Beijing. Environ. Sci. Technol., 41, 4348–4353.

    Article  Google Scholar 

  • Stein, U., and P. Alpert, 1993: Factor separation in numerical simulations. J. Atmos. Sci., 50, 2107–2115.

    Article  Google Scholar 

  • Streets, D. G., and Coauthors, 2003: An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res., 108(D21), 8809, doi: 10.1029/2002jd003093.

    Article  Google Scholar 

  • Streets, D. G., and Coauthors, 2007: Air quality during the 2008 Beijing Olympic Games. Atmos. Environ., 41, 480–492.

    Article  Google Scholar 

  • Tang, G., Y. Wang, X. Li, D. Ji, S. Hsu, and X. Gao, 2012: Spatialtemporal variations in surface ozone in Northern China as observed during 2009–2010 and possible implications for future air quality control strategies. Atmos. Chem. Phys., 12, 2757–2776.

    Article  Google Scholar 

  • Tang, X., Z. F. Wang, J. Zhu, A. E. Gbaguidi, Q. Z. Wu, J. Li, and T. Zhu, 2010: Sensitivity of ozone to precursor emissions in urban Beijing with a Monte Carlo scheme. Atmos. Environ., 44, 3833–3842.

    Article  Google Scholar 

  • Tao, Z. N., S. M. Larson, D. J. Wuebbles, A. Williams, and M. Caughey, 2003: A summer simulation of biogenic contributions to ground-level ozone over the continental United States. J. Geophys. Res., 108(D14), 4404, doi: 10.1029/2002JD002945.

    Article  Google Scholar 

  • Tao, Z. N., S. M. Larson, A. Williams, M. Caughey, and D. J. Wuebbles, 2005: Area, mobile, and point source contributions to ground level ozone: a summer simulation across the continental USA. Atmos. Environ., 39, 1869–1877.

    Article  Google Scholar 

  • Thunis, P., and C. Cuvelier, 2000: Impact of biogenic emissions on ozone formation in the Mediterranean area-a BEMA modeling study. Atmos. Environ., 34, 467–481.

    Article  Google Scholar 

  • The United Nations Environment Program (UNEP), 2009: Independent Environmental Assessment: Beijing 2008 Olympic Games. The United Nations Environment Program, 139pp.

    Google Scholar 

  • Wang, S. X., and Coauthors, 2010a: Quantifying the air pollutants emission reduction during the 2008 Olympic Games in Beijing. Environ. Sci. Technol., 44, 2490–2496.

    Article  Google Scholar 

  • Wang, T., and S. D. Xie, 2009: Assessment of traffic-related air pollution in the urban streets before and during the 2008 Beijing Olympic Games traffic control period. Atmos. Environ., 43, 5682–5690.

    Article  Google Scholar 

  • Wang, T., and Coauthors, 2010b: Air quality during the 2008 Beijing Olympics: Secondary pollutants and regional impact. Atmos. Chem. Phys., 10, 7603–7615.

    Article  Google Scholar 

  • Wang, X. M., G. Carmichael, D. L. Chen, Y. H. Tang, and T. J. Wang, 2005: Impacts of different emission sources on air quality during March 2001 in the Pearl River Delta (PRD) region. Atmos. Environ., 39, 5227–5241.

    Article  Google Scholar 

  • Wang, X. S., and J. L. Li, 2002: The effect of anthropogenic hydrocarbons to ozone formation in Beijing areas. Environ. Sci. Technol., 22, 22–26 (in Chinese).

    Google Scholar 

  • Wang, Y. X., J. Hao, M. B. McElroy, J. W. Munger, H. Ma, D. Chen, and C. P. Nielsen, 2009a: Ozone air quality during the 2008 Beijing Olympics: effectiveness of emission restrictions. Atmos. Chem. Phys., 9, 5237–5251.

    Article  Google Scholar 

  • Wang, X. S., J. L. Li, Y. H. Zhang, S. D. Xie, and X. Y. Tang, 2009b: Ozone source attribution during a severe photochemical smog episode in Beijing, China. Science in China (B), 52, 1270–1280.

    Article  Google Scholar 

  • Weinroth, E., M. Luria, C. Emery, A. Ben-Nun, R. Bornstein, J. Kaplan, M. Peleg, and Y. Mahrer, 2008: Simulations of Mideast transboundary ozone transport: A source apportionment case study. Atmos. Environ., 42, 3700–3716.

    Article  Google Scholar 

  • World Health Organization (WHO), 2004: Ethics in Health research. [Available online at http://whqlibdoc.who.int/emro/2004/9290213639chap2.pdf.]

    Google Scholar 

  • Wu, Q. Z., Z. F. Wang, H. S. Chen, W. Zhou, and M. Wenig, 2012: An evaluation of air quality modeling over the Pearl River Delta during November 2006. Meteorology and Atmospheric Physics, 116, 113–132.

    Article  Google Scholar 

  • Wu, Y., D. S. Ji, T. Song, B. Zhu, and Y. S. Wang, 2011: Characteristics of atmospheric pollutants in Beijing, Zhuozhou, Baoding and Shijiazhuang during the period of summer and autumn. Environmental Science, 32, 2741–2749. (in Chinese)

    Google Scholar 

  • Xin, J. Y., and Coauthors, 2010: Variability and reduction of atmospheric pollutants in Beijing and its surrounding area during the Beijing 2008 Olympic Games. Chinese Science Bulletin, 55, 1937–1944.

    Article  Google Scholar 

  • Xing, J., and Coauthors, 2011: Modeling study on the air quality impacts from emission reductions and atypical meteorological conditions during the 2008 Beijing Olympics. Atmos. Environ., 45, 1786–1798.

    Article  Google Scholar 

  • Yang, Q., Y. H. Wang, C. Zhao, Z. Liu, W. I. Gustafson, Jr., and M. Shao, 2011: NOx emission reduction and its effects on ozone during the 2008 Olympic Games. Environ. Sci. Technol., 45, 6404–6410.

    Article  Google Scholar 

  • Yarwood, G., S. Rao, M. Tocke, and G. Z. Whitten, 2005: Updates to the Carbon Bond Mechanism: CB05. ENVIRON International Corporation, Novato. Report to the U. S. Environmental Protection Agency. [Available online at http://www.camx.com/publ/pdfs/CB05FinalReport120805.pdf.]

    Google Scholar 

  • Yuan, Z. B., A. K. H. Lau, M. Shao, P. K. K. Louie, S. C. Liu, and T. Zhu, 2009: Source analysis of volatile organic compounds by positive matrix factorization in urban and rural environments in Beijing. J. Geophys. Res., 114, D00G15, doi: 10.1029/2008jd011190.

    Google Scholar 

  • Zhang, H. L., and Coauthors, 2012: Source apportionment of PM2.5 nitrate and sulfate in China using a source-oriented chemical transport model. Atmos. Environ., 62, 228–242.

    Article  Google Scholar 

  • Zhang, J., Z. Y. Ouyang, H. Miao, and X. K. Wang, 2011: Ambient air quality trends and driving factor analysis in Beijing, 1983–2007. Journal of Environmental Sciences, 23, 2019–2028.

    Article  Google Scholar 

  • Zhang, L., J. R. Brook, and R. Vet, 2003: A revised parameterization for gaseous dry deposition in air-quality models. Atmos. Chem. Phys., 3, 2067–2082.

    Article  Google Scholar 

  • Zhang, Q., and Coauthors, 2009: Asian emissions in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys., 9, 5131–5153.

    Article  Google Scholar 

  • Zhu, B., J. L. An, Z. F. Wang, and Y. Li, 2006: Relations of diurnal variations of photochemical ozone to its precursors. Journal of Nanjing Institute of Meteorology, 29, 744–749. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junling An.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Y., An, J., Li, J. et al. Effects of NO x and VOCs from five emission sources on summer surface O3 over the Beijing-Tianjin-Hebei region. Adv. Atmos. Sci. 31, 787–800 (2014). https://doi.org/10.1007/s00376-013-3132-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-3132-x

Key words

Navigation