Skip to main content
Log in

On the response of the global subduction rate to globalwarming in coupled climate models

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The response of the global subduction rate to global warming was assessed based on a set of Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) models. It was found that the subduction rate of the global ocean could be significantly reduced under a warming climate, as compared to a simulation of the present-day climate. The reduction in the subduction volume was quantitatively estimated at about 40 Sv and was found to be primarily induced by the decreasing of the lateral induction term due to a shallower winter mixed layer depth. The shrinking of the winter mixed layer would result from intensified stratification caused by increased heat input into the ocean under a warming climate. A reduction in subduction associated with the vertical pumping term was estimated at about 5 Sv. Further, in the Southern Ocean, a significant reduction in subduction was estimated at around 24 Sv, indicating a substantial contribution to the weakening of global subduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aoki, S., M. Hariyama, H. Mitsudera, H. Sasaki, and Y. Sasai, 2007: Formation regions of Subantarctic Mode Water detected by OFES and Argo profiling floats. Geophys. Res. Lett., 34, L10606.

    Article  Google Scholar 

  • Banks, H., R. Wood, and J. Gregory. 2002: Changes to Indian Ocean subantarctic mode water in a coupled climate model as CO2 forcing increases. J. Phys. Oceanogr., 32, 2816–2827.

    Article  Google Scholar 

  • Davis, X. J., L. M. Rothstein, W. K. Dewar, and D. Menemenlis, 2011: Numerical investigations of seasonal and interannual variability of North Pacific subtropical mode water and its implications for Pacific climate variability. J. Climate, 24, 2648–2665.

    Article  Google Scholar 

  • Downes, S. M., N. L. Bindoff, and S. R. Rintoul, 2009: Impacts of climate change on the subduction of mode and intermediate water masses in the Southern Ocean. J. Climate, 22, 3289–3302.

    Article  Google Scholar 

  • Downes, S. M., N. L. Bindoff, and S. R. Rintoul, 2010: Changes in the subduction of Southern Ocean water masses at the end of the twenty-first century in eight IPCC models. J. Climate, 23, 6526–6541.

    Article  Google Scholar 

  • Herraiz-Borreguero, L., and S. R. Rintoul, 2011: Subantarctic mode water: Distribution and circulation. Ocean Dyn., 61, 103–126.

    Article  Google Scholar 

  • Holbrook, N., and A. Maharaj, 2008: Southwest Pacific subtropical mode water: A climatology. Progress in Oceanography, 77, 298–315.

    Article  Google Scholar 

  • Huang, R. X., and B. Qiu, 1994: Three-dimensional structure of the wind-driven circulation in the subtropical North Pacific. J. Phys. Oceanogr., 29, 779–790.

    Article  Google Scholar 

  • Huang, R. X., and B. Qiu, 1998: The structure of the wind-driven circulation in the subtropical South Pacific Ocean. J. Phys. Oceanogr., 28, 1173–1186.

    Article  Google Scholar 

  • IPCC, 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Inter governmental Panel on Climate Change. S. Solomon, et al., Eds., Cambridge University Press, United Kingdom and New York, NY, USA, 996pp.

    Google Scholar 

  • Joyce, T. M., D. Clara, and A. S. Michael, 2000: The relation between decadal variability of subtropical mode water and the North Atlantic oscillation. J. Climate, 13, 2550–2569.

    Article  Google Scholar 

  • Kwon, Y.-O., and S. C. Riser, 2004: North Atlantic subtropical mode water: A history of ocean-atmosphere interaction 1961–2000. Geophys. Res. Lett., 31, L19307.

    Article  Google Scholar 

  • Lee, H.-C., 2009: Impact of atmospheric CO2 doubling on the North Pacific subtropical mode water. Geophys. Res. Lett., 36, L06602.

    Google Scholar 

  • Liu, L., and R. X. Huang, 2011: The global subduction/obduction rates, their interannual and decadal variability. J. Climate, 25, 1096–1115.

    Article  Google Scholar 

  • Luo, Y., Q. Liu, and L. M. Rothstein, 2009: Simulated response of North Pacific mode waters to global warming. Geophys. Res. Lett., 36, L23609.

    Article  Google Scholar 

  • Luo, Y., Q. Liu, and L. M. Rothstein, 2011: Increase of South Pacific eastern subtropical mode water under global warming. Geophys. Res. Lett., 38, L01601.

    Google Scholar 

  • Marshall, J. C., A. J. G. Nurser, and R. G. Williams, 1993: Inferring the subduction rate and period over the North Atlantic. J. Phys. Oceanogr., 23, 1315–1329.

    Article  Google Scholar 

  • Nishikawa, S., H. Tsujino, K. Sakamoto, and H. Nakano, 2010: Effects of mesoscale eddies on subduction and distribution of subtropical mode water in an eddy-resolving OGCM of the western North Pacific. J. Phys. Oceanogr., 40, 1748–1765.

    Article  Google Scholar 

  • Oka, E., 2009: Seasonal and interannual variation of North Pacific subtropical mode water in 2003–2006. J. Oceanogr., 65, 151–164.

    Article  Google Scholar 

  • Qiu, B., and R. X. Huang, 1995: Ventilation of the North Atlantic and North Pacific: Subduction versus obduction. J. Phys. Oceanogr., 25, 2374–2390.

    Article  Google Scholar 

  • Qiu, B., P. Hacker, S. Chen, K. A. Donohue, D. R. Watts, H. Mitsudera, N. G. Hogg, and S. R. Jayne, 2006: Observations of the subtropical mode water evolution from the Kuroshio extension system study. J. Phys. Oceanogr., 36, 457–473.

    Article  Google Scholar 

  • Qu, T., S.-P. Xie, H. Mitsudera, and A. Ishida, 2002: Subduction of the North Pacific mode waters in a global high-resolution GCM. J. Phys. Oceanogr., 32, 746–763.

    Article  Google Scholar 

  • Qu, T., S. Gao, I. Fukumori, R. A. Fine, and E. J. Lindstrom, 2008: Subduction of South Pacific waters. Geophys. Res. Lett., 35, L02610, doi: 10.1029/ 2007GL032605.

    Google Scholar 

  • Saenko, O. A., J. C. Fyfe, and M. H. England, 2005: On the response of the oceanic wind-driven circulation to atmospheric CO2 increase. Climate Dyn., 25, 415–426.

    Article  Google Scholar 

  • Saenko, O. A., X-Y. Yang, and M. H. England, and W. G. Lee, 2011: Subduction and transport in the Indian and Pacific Oceans in a 2 × CO2 climate. J. Climate, 24, 1821–1838.

    Article  Google Scholar 

  • Sallee, J.-B., K. Speer, S. Rintoul, and S. Wijffels, 2010: Southern Ocean thermocline ventilation. J. Phys. Oceanogr., 40, 509–529.

    Article  Google Scholar 

  • Sloyan, B. M., L. D. Talley, T. K. Chereskin, R. Fine, and J. Holte, 2010: Antarctic intermediate water and subantarctic mode water formation in the southeast Pacific: The role of turbulent mixing. J. Phys. Oceanogr., 40(7), 1558–1574.

    Article  Google Scholar 

  • Tsubouchi, T., T. Suga and K. Hanawa, 2007: Three types of south pacific subtropical mode waters: Their relation to the largescale circulation of the South Pacific subtropical gyre and their temporal variability. J. Phys. Oceanogr., 37, 2478–2490.

    Article  Google Scholar 

  • Tsubouchi T., T. Suga, and K. Hanawa, 2010: Indian Ocean subtropical mode water: Its water characteristics and spatial distribution. Ocean Sci., 6, 41–50.

    Article  Google Scholar 

  • Xie, S.-P., T. Kunitani, A. Kubokawa, M. Nonaka, and S. Hosoda, 2000: Interdecadal thermocline variability in the North Pacific for 1958–1997: A GCM simulation. J. Phys. Oceanogr., 303, 2798–2813.

    Article  Google Scholar 

  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary, 2002: Structure and mechanisms of South Indian Ocean climate variability. J. Climate. 15, 864–878.

    Article  Google Scholar 

  • Xie, S.-P., L. Xu, Q. Liu, and F. Kobashi, 2011: Dynamical role of mode-water ventilation in decadal variability in the central subtropical gyre of the North Pacific. J. Climate, 24, 1212–1225.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengyan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Wang, Z. On the response of the global subduction rate to globalwarming in coupled climate models. Adv. Atmos. Sci. 31, 211–218 (2014). https://doi.org/10.1007/s00376-013-2323-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-2323-9

Key words

Navigation