Skip to main content
Log in

Tropospheric wet refractivity tomography based on the BeiDou satellite system

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

This paper presents a novel approach for assessing the precision of the wet refractivity field using BDS (BeiDou navigation satellite system) simulations only, GPS, and BDS+GPS for the Shenzhen and Hongkong GNSS network. The simulations are carried out by adding artificial noise to a real observation dataset. Instead of using the d and s parameters computed from slant wet delay, as in previous studies, we employ the Bias and RMS parameters, computed from the tomography results of total voxels, in order to obtain a more direct and comprehensive evaluation of the precision of the refractivity field determination. The results show that: (1) the precision of tropospheric wet refractivity estimated using BDS alone (only 9 satellites used) is basically comparable to that of GPS; (2) BDS+GPS (as of current operation) may not be able to significantly improve the data’s spatial density for the application of refractivity tomography; and (3) any slight increase in the precision of refractivity tomography, particularly in the lower atmosphere, bears great significance for any applications dependent on the Chinese operational meteorological service.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bender, M, and Coauthors, 2009: Estimates of the information provided by GPS slant data observed in Germany regarding tomographic applications. J. Geophys. Res., 114(2009), D06303, doi: 10.1029/2008JD011008.

    Google Scholar 

  • Bender, M., G. Dick, M. Ge, Z. Deng, J. Wickert, H.G. Kahle, A. Raabe, and G. Tetzlaff, 2011a: Development of a GNSS water vapour tomography system using algebraic reconstruction techniques. Adv. Space Res., 47(10), 1704–1720.

    Article  Google Scholar 

  • Bender, M., R. Stosius, F. Zus, G. Dick, J. Wickert, and A. Raabe, 2011b: GNSS water vapour tomography—Expected improvements by combining GPS, GLONASS and Galileo observations. Adv. Space Res., 47(5), 886–897.

    Article  Google Scholar 

  • Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, 1992: GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System. J. Geophys. Res., 97, 15 787–15 801.

    Article  Google Scholar 

  • Bevis, M., S. Chiswell, and S. Businger, 1995: GPS/STORM: GPS sensing of atmospheric water vapor for meteorology. J. Atmos. Oceanic Technol., 12, 468–478.

    Article  Google Scholar 

  • Flores, A., G. Ruffini, and A. Rius, 2000: 4D tropospheric tomography using GPS slant wet delays. Annales Geophysicae, 18(2), 223–234.

    Article  Google Scholar 

  • Gutman, S. I., S. R. Sahm, S. G. Benjamin, B. E. Schwartz, K. L. Holub, J. Q. Stewart, and T. L. Smith, 2004: Rapid retrieval and assimilation of ground based GPS precipitable water observations at the NOAA forecast systems laboratory: Impact on weather forecasts. J. Meteor. Soc. Japan., 82, 351–360.

    Article  Google Scholar 

  • Hirahara, K., 2000: Local GPS tropospheric tomography. Earth, Planets and Space, 52(11), 935–939.

    Google Scholar 

  • Liu, J., Z. Sun, H. Liang, X. Xu, and P. Wu, 2005: Precipitable water on the Tibetan Plateau estimated by GPS, water vapor radiometer, radiosonde, and numerical weather prediction analysis and its impact on the radiation budget. J. Geophys. Res., 110, D17106. doi: 10.1029/2004JD005715.

    Article  Google Scholar 

  • Ma, J., S. H. Tang, Y. Huang, and W. J. Wang, 2011: IGS precise ephemeris based on the comparison of the ways for the satellite position interpolation. Urban Geotechnical Investigation & Surveying, 5, 89–93. (in Chinese)

    Google Scholar 

  • Nilsson, T., and L. Gradinarsky, 2006: Water vapor tomography using GPS phase observations: Simulation results. IEEE Trans. Geosci. Remote Sens., 44 (10 Part 2), 2927–2941.

    Article  Google Scholar 

  • Notarpietro, R., M. Cucca, M. Gabella, G. Venuti, and G. Perona. 2011: Tomographic reconstruction of wet and total refractivity fields from GNSS receiver networks. Adv. Space Res., 47, 898–912.

    Article  Google Scholar 

  • Perler, D., A. Geiger, and F. Hurter, 2011: 4D GPS water vapor tomography: New parameterized approaches. Journal of Geodesy, 85(8), 539–550.

    Article  Google Scholar 

  • Rocken, C., R. Ware, T. V. Hove, F. Solheim, C. Alber, J. Johnson, M. Bevis, and S. Businger, 1993: Sensing atmospheric water vapor with the Global Positioning System. Geophys. Res. Lett., 20, 2631–2634.

    Article  Google Scholar 

  • Rocken, C., T. V. Hove, and R. Ware, 1997: Near real-time GPS sensing of atmospheric water vapor. Geophys. Res. Lett., 24(24), 3221–3224.

    Article  Google Scholar 

  • Rohm, W., and J. Bosy, 2009: Local tomography troposphere model over mountains area. Atmospheric Research, 93(4), 777–783.

    Article  Google Scholar 

  • Rohm, W., and J. Bosy, 2011: The verification of GNSS tropospheric tomography model in a mountainous area. Advances in Space Research, 47(10), 1721–1730.

    Article  Google Scholar 

  • Shi, C., and Coauthors, 2012: Research on precise orbit determination and positioning of Compass Satellite Navigation System. Science China: Earth Science, 42(6), 854–861. (in Chinese)

    Google Scholar 

  • Wang, W., and J. X. Wang, 2011: Tropospheric water vapor tomography based on algebraic reconstruction techniche. Journal of Computer Applications, 31(11), 3149–3156. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianchun Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Wang, X., Dai, Z. et al. Tropospheric wet refractivity tomography based on the BeiDou satellite system. Adv. Atmos. Sci. 31, 355–362 (2014). https://doi.org/10.1007/s00376-013-2311-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-2311-0

Key words

Navigation