Skip to main content
Log in

The impact of the tropical Indian Ocean on South Asian High in boreal summer

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The tropical Indian Ocean (TIO) is warmer than normal during the summer when or after the El Niñno decays. The present study investigates the impact of TIO SST on the South Asian High (SAH) in summer. When the TIO is warmer, the SAH strengthens and its center shifts southward. It is found that the variations in the SAH cannot be accounted for by the precipitation anomaly. A possible mechanism is proposed to explain the connection between the TIO and SAH: warmer SST in the TIO changes the equivalent potential temperature (EPT) in the atmospheric boundary layer (ABL), alters the temperature profile of the moist atmosphere, warms the troposphere, which produces significant positive height anomaly over South Asia and modifies the SAH.

An atmospheric general circulation model, ECHAM5, which has a reasonable prediction skill in the TIO and South Asia, was selected to test the effects of TIO SST on the SAH. The experiment with idealized heating over the TIO reproduced the response of the SAH to TIO warming. The results suggest that the TIO-induced EPT change in the ABL can account for the variations in the SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N. C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. J. Climate, 15, 2205–2231.

    Article  Google Scholar 

  • Annamalai, H., P. Liu, and S.-P. Xie, 2005: Southwest Indian Ocean SST variability: Its local effect and remote influence on Asian monsoons. J. Climate, 18, 4150–4167.

    Article  Google Scholar 

  • Dethof, A., A. O’Neill, J. M. Slingo, and H. G. J. Smit, 1999: A mechanism for moistening the lower stratosphere involving the Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 125, 1079–1106.

    Google Scholar 

  • Du, Y., and S. P. Xie, 2008: Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophys. Res. Lett., 35, L08712, doi: 10.1029/2008GL033631.

    Article  Google Scholar 

  • Du, Y., S. P. Xie, G. Huang, and K. Hu, 2009: Role of air-sea interaction in the long persistence of El Niñno-induced North Indian Ocean warming. J. Climate, 22, 2023–2038.

    Article  Google Scholar 

  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 1111–1143.

    Article  Google Scholar 

  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1997: Reply to comments by Bjorn Stevens, David A. Randall, Xin Lin and Michael T. Montgomery on “On large-scale circulations in convecting atmospheres”. Quart. J. Roy. Meteor. Soc., 123, 1779–1782.

    Google Scholar 

  • Flohn, H., 1960: Recent investigations on the mechanism of the “Summer Monsoon” of Southern and Eastern Asia. Proc. Symp. Monsoon of the World, New Delhi, Hind Union Press, 75–88.

    Google Scholar 

  • Huang, B., and J. L. Kinter, 2002: Interannual variability in the tropical Indian Ocean. J. Geophys. Res., 107, 3199, doi: 10.1029/2001JC001278.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932.

    Article  Google Scholar 

  • Lau, N. C., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian-Australian monsoons as simulated in GCM experiments. J. Climate, 13, 4287–4309.

    Article  Google Scholar 

  • Lau, N. C., and M. J. Nath, 2003: Atmosphere-Ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 3–20.

    Article  Google Scholar 

  • Li, Q., and Coauthors, 2005: Convective outflow of South Asian pollution: A global CTM simulation compared with EOSMLS observations. Geophys. Res. Lett., 32, L14826, doi: 10.1029/2005GL022762.

    Article  Google Scholar 

  • Li, S., J. Lu, G. Huang, and K. Hu, 2008: Tropical Indian Ocean basin warming and East Asian summer monsoon: A multiple AGCM study. J. Climate, 21, 6080–6088.

    Article  Google Scholar 

  • Mason, R. B., and C. E. Anderson, 1963: The development and decay of the 100-MB. Summertime anticyclone over Southern Asia. Mon. Wea. Rev., 91, 3–12.

    Article  Google Scholar 

  • Masumoto, Y., and G. Meyers, 1998: Forced Rossby waves in the southern tropical Indian Ocean. J. Geophys. Res., 103, 27589–27602.

    Article  Google Scholar 

  • Park, M., W. J. Randel, D. E. Kinnison, R. R. Garcia, and W. Choi, 2004: Seasonal variation of methane, water vapor, and nitrogen oxides near the tropopause: Satellite observations and model simulations. J. Geophys. Res, 109, D03302, doi: 10.1029/2003JD003706.

    Article  Google Scholar 

  • Randel, W. J., and M. Park, 2006: Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS). J. Geophys. Res., 111, D12314, doi: 10.1029/2005JD006490.

    Article  Google Scholar 

  • Rayner, N. A., P. Brohan, D. E. Parker, C. K. Folland, J. J. Kennedy, M. Vanicek, T. J. Ansell, and S. F. B. Tett, 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. J. Climate, 19, 446–469.

    Article  Google Scholar 

  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5: Part 1: Model description. Max-Planck-Institut für Meteorologie Rep. 349, 140pp.

  • Su, H., and J. D. Neelin, 2003: The scatter in tropical average precipitation anomalies. J. Climate, 16, 3966–3977.

    Article  Google Scholar 

  • Tao, S., and F. Zhu, 1964: The variation of 100mb circulation over South Asia in summer and its association with march and withdraw of West Pacific Subtropical High. Acta Meteorological Sinica, 34, 385–395. (in Chinese)

    Google Scholar 

  • Wang, B., R. Wu, and X. Fu, 2000: Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536.

    Article  Google Scholar 

  • Wang, B., R. Wu, and T. Li, 2003: Atmospherewarm ocean interaction and its impacts on Asian-Australian monsoon variation. J. Climate, 16, 1195–1211.

    Article  Google Scholar 

  • Wu, B., T. Zhou, and T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 2992–3005.

    Article  Google Scholar 

  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558.

    Article  Google Scholar 

  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. Mc-Creary, 2002: Structure and mechanisms of South Indian Ocean climate variability. J. Climate, 15, 864–878.

    Article  Google Scholar 

  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-Western Pacific climate during the Summer following El Niño. J. Climate, 22, 730–747.

    Article  Google Scholar 

  • Xie, S.-P., Y. Du, G. Huang, X.-T. Zheng, H. Tokinaga, K. Hu, and Q. Liu, 2010: Decadal shift in El Niño influences on Indo-western Pacific and East Asian climate in the 1970s. J. Climate, 23, 3352–3368.

    Article  Google Scholar 

  • Yang, J., Q. Liu, S. P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, doi: 10.1029/2006GL028571.

    Article  Google Scholar 

  • Yang, J., and Q. Liu, 2008: The “charge/discharge” role of the basin-wide mode of the Indian Ocean SST anomaly-influence on the South Asian High in summer. Acta Oceanologica Sinica, 30, 12–19. (in Chinese)

    Google Scholar 

  • Yu, W., B. Xiang, L. Liu, and N. Liu, 2005: Understanding the origins of interannual thermocline variations in the tropical Indian Ocean. Geophys. Res. Lett., 32, L24706, doi: 10.1029/2005GL024327.

    Article  Google Scholar 

  • Zhang, P., S. Yang, and V. E. Kousky, 2005: South Asian High and Asian-Pacific-American Climate Teleconnection. Adv. Atmos. Sci., 22, 915–923.

    Article  Google Scholar 

  • Zhang, Q., Y. Qian, and X. Zhang, 2000: Interannual and Interdecadal variations of the South Asia High. Chinese J. Atmos. Sci., 24, 67–78. (in Chinese)

    Google Scholar 

  • Zhang, Q., and G. Wu, 2001: The large area flood and drought over Yangtze river valley and its relation to the South Asia High. Acta Meteorologica Sinica, 59, 569–577. (in Chinese)

    Google Scholar 

  • Zhang, Q., G. Wu, and Y. Qian, 2002: The bimodality of the 100 hPa South Asia high and its relationship to the climate anomaly over East Asia in summer. J. Meteor. Soc. Japan, 80, 733–744.

    Article  Google Scholar 

  • Zhao, P., X. Zhang, Y. Li, and J. Chen, 2009: Remotely modulated tropical-North Pacific ocean-atmosphere interactions by the South Asian high. Atmos. Res., 94, 45–60.

    Article  Google Scholar 

  • Zhou, N., Y. Yu, and Y. Qian, 2006: Simulation of the 100-hPa South Asian High and precipitation over East Asia with IPCC coupled GCMS. Adv. Atmos. Sci., 23, 375–390.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Huang  (黄 刚).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, G., Qu, X. & Hu, K. The impact of the tropical Indian Ocean on South Asian High in boreal summer. Adv. Atmos. Sci. 28, 421–432 (2011). https://doi.org/10.1007/s00376-010-9224-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-010-9224-y

Key words

Navigation